• Title/Summary/Keyword: Optimal replacement

Search Result 386, Processing Time 0.03 seconds

Development and Applications of a Methodology and Computer Algorithms for Long-term Management of Water Distribution Pipe Systems (상수도 배수관로 시스템의 장기적 유지관리를 위한 방법론과 컴퓨터 알고리즘의 개발 및 적용)

  • Park, Suwan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.356-366
    • /
    • 2007
  • In this paper a methodology is developed to prioritize replacement of water distribution pipes according to the economical efficiency of replacement and assess the long-term effects of water main replacement policies on water distribution systems. The methodology is implemented with MATLAB to develop a computer algorithm which is used to apply the methodology to a case study water distribution system. A pipe break prediction model is used to estimate future costs of pipe repair and replacement, and the economically optimal replacement time of a pipe is estimated by obtaining the time at which the present worth of the total costs of repair and replacement is minimum. The equation for estimating the present worth of the total cost is modified to reflect the fact that a pipe can be replaced in between of failure events. The results of the analyses show that about 9.5% of the pipes in the case study system is required to be replaced within the planning horizon. Analyses of the yearly pipe replacement requirements for the case study system are provided along with the compositions of the replacement. The effects of water main replacement policies, for which yearly replacement length scenario and yearly replacement budget scenario are used, during a planning horizon are simulated in terms of the predicted number of pipe failures and the saved repair costs.

A Study on the Optimal Replacement Periods of Digital Control Computer's Components of Wolsung Nuclear Power Plant Unit 1 (월성 원자력 발전소 1호기의 디지탈 제어컴퓨터 부품들의 최적교체주기에 관한연구)

  • Mok, Jin-Il;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.430-436
    • /
    • 1993
  • Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Even a trip of a single nuclear power plant (NPP) causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this paper we investigated the optimal replacement periods of the control computer's components of Wolsung nuclear power plant Unit 1. We first derived mathematical models for optimal replacement periods to the digital control computer's components of Wolsung NPP Unit 1 and calculated the optimal replacement periods analytically. We compared the periods with the replacement periods currently used at Wolsung NPP Unit 1. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained and those used in the field show a little difference.

  • PDF

A Study on the Properties of Self-Compacting Concrete Using Ground Calcium Carbonate (중탄산칼슘을 이용한 자기충전형 콘크리트의 특성에 관한 연구)

  • 최연왕;정문영;임흥빈;황윤태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.73-78
    • /
    • 2002
  • This study examines self-compacting of concrete using Ground Calcium Carbonate(GCC) gathering in limestone mine of Banyans district in order to make self-compacting concrete in the range of design strength 300kgf/cm$^2$ and the optimal mix proportion of self-compacting concrete that can use in field structure. The result shows that the optimal GCC replacement ratio is 45$\pm$5% in the normal strength of design strength 300kgf/cm$^2$ and that the volume ratio of the optimal fine aggregate used as the way satisfying both viscosity and compacting ability without separating materials is 46%. The optimal volume ratio of the coarse aggregate considering the economical aspect of concrete is 50%. It is desirable that the optimal mix proportion satisfying self-compacting for replacement of GCC is decided through mix design according to each replacement ratio.

  • PDF

Preventive Policy With Minor Failure Under Age and Periodic Replacement (경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

Optimal Periodic Replacement Policy Under Discrete Time Frame (이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Optimal Control Policy for Replacements Involving Two Machines and One Repairman

  • Noh, Jang-Kab
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.1
    • /
    • pp.61-83
    • /
    • 1991
  • There has been a great deal of research dealing with the optimal replacement of stochastically deteriorating equipment and research in queueing systems with a finite calling population. However. there has been a lack of research which combines these two areas to deal with optimal replacement for a fixed number of machines and a limited number of repairmen. In this research, an optimal control policy for replacement involving two machines and one repairman is developed by investigating a class of age replacement policies in the context of controlling a G/M/1 queueing system with a finite calling population. The control policy to be imposed on this problem is an age-dependent control policy, described by the control limit $t^{\ast}$. The control limit is operational only when the repairman is idle; that is. if both machines are working, as soon as a machine reaches the age $t^{\ast}$ it is taken out of service for replacememt. We obtain the ${\epsilon}$-optimal control age which will minimize the long-run average system cost. An algorithm is developed that is applicable to general failure time distributions and cost functions. The algorithm does not require the condition of unimodality for implementation.

  • PDF

A Study on a Preventive Replacement Model by the Dynamic Programming Method (동적 계획법에 의한 예방교체모형에 관한 연구)

  • 조재립;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.75-80
    • /
    • 1987
  • This paper is deals with the preventive replacement for the equipment which fails only when the total amount of damage reaches a prespecified failure level. Most of replacement model use time as their decision variable, but it is not appropriate for the cases in which failures dependent on their cumulative damage levels. In this paper, a new type preventive replacement model is introduced in which an equipment is replaced before failure when the cumulative damage reaches a certain level or replaced on failure, whichever occures first. The optimal replacement damage levels which minimize total expected cost are obtained by the Dynamic programming Method when the number of use of the equipment is finite. A numerical example is also presented. The optimal preventive replacement policy when the equipment will be used for a finite time span is also discussed.

  • PDF

Optimal Replacement Policy under Capital Budgeting Constraints (자본제약하(資本制約下)의 최적대체정책(最適代替政策))

  • Lee, Sang-Beom;Cha, Dong-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.2
    • /
    • pp.57-62
    • /
    • 1977
  • We consider the problem of determining the optimal replacement policy of the items which deteriorate appreciably with time and become obsolete. Most of the conventional engineering economy models including the widely-accepted MAPI model assume linearity of technological improvement over time, in obtaining the economic lives of items and the net present values of the replacement alternatives under consideration. The main achievement of this paper is in that it successfully relaxes this strict linearity assumption to accommodate various other types of technological improvements in determining those values. Based on these results, we also include in this paper the mathematical models by which to determine the optimal replacement policies of items both under and without capital budgeting constraints.

  • PDF

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Replacement Model Based on Cost and Downtime

  • Jung, Ki-Mun;Han, Sung-Sil;Lim, Jae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.889-901
    • /
    • 2003
  • In this paper, we consider the optimal replacement policies following the expiration of the combination warranty. The combination warranty can be divided into the renewing combination warranty and the non-renewing combination warranty. The criterion used to determine the optimal replacement period is the overall value function based on the expected cost and the expected downtime. Thus, we obtain the expected cost rate per unit time and the expected downtime per unit time for our model. And then the overall value function suggested by Jiagn and Ji(2002) is applied to obtain the optimal replacement period. The numerical examples are presented for illustrative purpose.

  • PDF