R (7 ks w O .

BE EREES T B
BT, HIH, 1991.6.30.

Optimal Control Policy for Replacements
Involving Two Machines and One Repairman
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ABSTRACT

There has been a great deal of research dealing with the optimal replacement of
stochastically deteriorating equipment and research in Queueing sysiems with a
finite calling population, However, there has been a lack of research which
combines these two areas to deal with qptiméﬂ- replacement for a fixed number of
machines and a limited number of repairmen.

In this research, an optimal control policy for replacement involving two machines
and one repairman is developed by investigating a class of age replacement policies
in the context of controlling a G/M/l queueing system with a finite calling
population. The control policy to be imposed on this problem is an age - dependent
control policy, described by the control limit t* The cdnt;ol limit is operational only
when the repairman is idle: that is, if both machines are working, as soon as a-
machine reaches the age t*it is taken out of service for ‘replacemer_gt, _

We obtain the € - optimal control age which will mzmmzze the iong-run average
system cost. An algorithm is developed that is applicable to general failure time
distributions and cost functions. The algorithm does not require the condition of

unimodality for implementation.

* Air Force HQ.
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1." Introduction

Much research has been done dealing with the optimal replacement (maintenance) of
systems that are subject to stochastic failures. The initial replacement problems dealt with
the question of determiping: the optimal replgcement age of (_equipment when the two major
cost considerations were fhe replacement cost>incrurre.d’ during a piannéd replacement and
the larger cost incurred when the replacement was made due to a machine failure,

McCall (1965). Jardine (1973). Pierskaila and Voelker (1976), and Sherif and Smith
(1981) have extensively surveyed the works published up to 1981. Recently Valdez - Flores
and Feldman (1989} have presented a comprehensive survey of replacement models
published subsequent to Pireskalla and Voelker's survey.

Much of the early literature on replaéement problems assumed that sufficient repair
crews were available so that replacment could begin immediately after a failure. However,
there are often situations in which some of the failed machines must wait to be fixed or
replaced. In such circumstances each machine can be found in one of the following three
cases : running, idle and waiting for repair, or idle during repair. When this situation is
formulated as a queueing problem in which a repair crew is the server and the machines
are customers, it is referred to as the maéhine interference problem,

Recently, Stecke and Aronson [1985) extensively surveyed work dealing with the ma-
chine interference problem published up to 1983. Most of the machine interference models
presented in their survey can be classified inté two groups according to the types of ma-
chine failure and repairf deterministic models and probabilistic models, Bunday and
Scraton (1980) derived the steady -state prqbabilities for the G/M/r machine inteference
model, and they are identical to the steady-state probabilities for the M/M/r machine
interference model case as long as their means are equal, Hence mﬁch of the work
completed for the Markov machine interference problem would seem to apply to the gen-
eral failure distribution case. (Keller {1980) uses a reversibility argument to indicate that
the steady - state probabilities for the finite population G/M/r queue are insensitive to the
distribuﬁon_ However,we focus on the work of Bunday and Scraton,because we will take
advantage of their methodology.)

Even though there is a large body of literature for optimal replacement models and ma-

chine interference models, there appears to be no research resulls when these two areas
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are combined. Qur purpose is to investigate optimal replacement for the two-machine
interference problem. By investigating the two-machine Ca{se'we are restrictive in the
generality of the immediate application of this research, but-we are able to develop an
approach for- optimal replacement in a setting that has not received much attention. -
Section 2 contains the problem statement, The derivation of the steady - state probability
and expected number of visits to each state are discussed in Sections 3 to 5. Finally, in
Section 6, we derive an algorithm for finding the optimal replacement policy, We illustrate

the algorithm by applying it to a problem where the failure times are Phase-type

distribution

2. Problem statement

Consider a system consisting of two identical. independent machines under the care of
one repairman. The time to failure of each machine is a random variable governed by a
general distribution G, When a machine fails, the m.achine is replaced and the
replacement (or repair) time is exponentiaily distributed with mean time 1. ¢, The control
policy to be imposed on this problem is an age - dependent control policy described by the
control limit ¢ The control limit is operational only when the repairman is idle. that is , if
both machines are working, as soon as a machine reaches the age t* it is taken out of
service for replacement, When a machine is taken out of service due to its age reaching
the control limit t*, it is replaced with a new. probabilistically identical machine, This
replacement time is. also exponentially distributed with mean 1/y:. If the repairman is busy,
the control limit is ignored and the machine is replaced only when it fails.

Whenever a machine is taken out of service due to its age reaching the control limit ¢
(i.e.. a planned replacement), a cost ¢p is incurred, A cost ¢, (with c,) cp) ‘is incurred
when a machine is replaced because of failure. Furthermore,there is an addtitional cost of
¢g incurred per unit time while a machine is down,

Our problem is to find the control limit that minimizes the long-run average cost, This

system cost, for a fixed control limit t*, is given by
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ct*) =fil‘lt {e,E[T, (t)] +cEIN;(8)] +¢,EIN, (t)] ), @.1)

where T,(t) is the machine down time during the interval {0, tJ, N,(t) is the number of
machine failures during the interval (0, t}, and N,(t) is the number of machine planned
replacements during the interval (0, t). (Note that the right - hand - side of Eq. (2.1) is a
function of # although for notational simplicity we do not explicitly show it,)

The typical state space used to describe a two - machine replacement problem is {0, I,
2} where a state represents the number of working machines. Howerver, for this problem,
it is necessary to know the reason for a machine being taken out of service. Before
descibing our state space, consider the ways théz the system may evolve to the state of
having only one machine working., There are four possibilities : (1) both machines were
working and one machine fails, (2) both machines were working and the older machine
reaches the control limit, (3} no machines were woking and a machine replacement was
finished, and (4) one machine whose age was greater than the control limit was working
at thg time that replacement was finished, If ail that is known about the system is the
numBer of working machines, then being in state 1 does not contain enough information to

determine costs Thus the state space will have to be expanded,
Let E denote the state space, where E is defined by

E={0, @. 15, d,p, 1.p.0}.

State (0) represents no machines working; state (2) represents two mahines working:
state (1, f) represents one machine working such that the transition into (1, f was
caused by a machine failure and not by the control limit; state (1, p) was planned
replacement (i.e., caued by the control limit) from state (2); and, state (1, p, 0) was a
planned replacement from state (1, i, (1. p}, or (1, p, 0). The machine working at the
arrival epoch of state (1, p, 0) is a brand new méchine (see Figure 2.1).

The first part of the system cost is the cost incurred due to machine unavailability
(machine down time cost) . Let gq;(t*) represent the steady-state probability of state i € E

under control limit t* Then the expected machine down cost per unit time is

lim BT O]} = ca200(t) + aus(E) + 910 + mpst)- (22)

_64_



The second part of the system cost (machine failure cost) is the product of ¢, and the
expected number of machine failures per unit time. All visits to state (0) result from ma-
chine failures. By the definition of state (1, #.,.visits (I, fi are due to failure from state
(2} or are from state. (0)  Since the number. of visits from stake . (0) must equal the
number of visits to state (0), we have that all visits to state (1, §) are (eventually) from
failures, Thus, in the long ruh; the number. of visits to state (1, f per unit time equals
the number of failures (see Figure 2.1). Let n;(t*) be the number of visits to state i € E
per unit time under the control limit t* Then the expected machine failure cost per unit

time is

Jim (e BN/} = e (e} (23)

The third part of the system cost (machine planned replacement cost) is the product of
¢, and the expected number of machine planned replacemenis per unit time, The expected
number of machine planned replacements is the sum of expected number of visits to state
(1, p) and (1, p, 0). then the expected machine planned feplacement cost per unit time

is

Jim (e BN} = cpfmplt”) + maalt))} (24)

From Egs. (1.1), (2.2), (2.3), and (2.4). the cost function is

C(t') = ca{200(t") + q1.5(t") + qup(t") + qip0(t")} + e {m.s(¢")}

+ cp{mp(t’) + mpo(t’)}- (2.5)
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Figure 2.1. Fe_asible stale transitions diagram, The arrows with a f represent transition
due to machine failure.

For t € R, = {0, o), let ¥, denote the state of system for fixed ¢, then ¥ = (Y.t &
R,} is a stochastic process with a continuous time parameter, We shall assume that
process {Yi:t € R,} is ergodic; therefore, the limiting probability that the process will be
in state i & E at a arbitrary point of time exists, For fixed state i € E, let the length of
successive sojourn times of state i be denoted by 7, 7, - - -, Let N(t) be the ran-
dom variable representing the number of vsits to state i during the time_ interval (o, ). By
the ergodic property (Parzen(62), pp.72-75). the steady - state probability of state i under
control limit £ has the following property :

Ni(t)
im 295 T gy, (2.6)
t—oo t

Define the mean sojourn time of state i (namely, E(7, j}) under control limit t*as m, (t*).

Then,

N(¢)

E| Z 75,5] = E[N:(t)mi(t"). (2.7)

By definition, we also have that
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Jim LBV = (6 29

Therefore combining Eqs. (2.6) to (2.8), the expected number of visits to state i per unit

time under control limit t*is given by

n(t) = HEL (2.9)

The problem of calculating the cost Eq. (2.5) is now reduced to the determination of

the steady - state probabilities, q;, and the mean sojourn times, m, for i € E.

3. Derivation of steady - sate equations

Let G the distribution function of the failure time for a machine, with G = | - G and gits
density, We derive the steady -state equation by adding a control limit to the machine
interference problem of Bunday and Scraton {1980) restricted to two machines. Their ap-
proach uses a “delta-t” argument and includes derivatives of the functions @,. Q.. and
G. Since imposing a control on G results in a discontinuous function, we approximate the
control function with a differentiable function that is arbitrarily close to control. That is

for a small € > 0, define the following function :

G(t) for t<t*,
G(t) =4 o(t) for t*<t<t*+e
0 for t >t*te.

where ¢ is a (steeply decreasing) function such that Ge is continuous and once
defferentiable, Thus, 65 limits to the complement of the failure time distribution under the
control limit t* as € approaches zero. Also, let ge denote the negative of the derivative of
Ge.

Let @, (t,.t.:t) dtdt, denote the probability that at time t both machines are operating and

the age of one machine is in the interval (¢.t + dt) and the age of of the second ma-
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chine is in the interval (t.t + dt). Let Q\,f(t,:t) dt, be the probability that any one
particular machine is operating under state (1, fi and the age of the operating machine is
the interval (¢, ¢t + dt). Let @,p(t: t) di be the probability that any one particular
machine in running under state (I, p, 0) and its age is in the interval (t.4 + dt). Let
Q. .p. o(t;; t)dt be the probability that any one particuar machine is running under state
{1, p. 0) and its age is in the interval (4, & + dt). Finally, the probability that no
machines are operating at time t is given by @ (t). (The functions Q.. Q.5 Q.p Qpo0
and @, are dependent on € but we have not in cluded ¢ in the subscript for ease of
notation )

Since repair times are exponentially distributed, we do not need to consider the current
state of each repair in progress at time t. Hence, the state of the system is adequately
described by the ages of the machines and the time t to predict its future behavior. By
relating the state of the system at time t + At to the state at time ¢, we obtain a set of
equations, In the following, s is the repair rate, g(t) /G (t) is the failure rate for a machine
of age t when only one machine is operating, and gw(t),law(t) is the failure rate for a

machine of age t when both machines are operating. Thus, we have

. ) _ . _ gf(tl) _ gc(tz)
Qa2 + Aty + At;t 4+ At) = Qa(th, L5 1) {1 Até((t;) Até'((tz)} (3.1)

for 0 < t. t { t* + .

Qus(ts + At;t + At) = Qi 4(tast) [1 - At%% - gAt}

¢ . 9«(5)
+ At | Q,(t,s:t)=~ds for ¢, >0, (3.2)
0 G(s) _

t
Ql,p(tl + Attt + At) = Ql,p(tl; t) [1 — At g_( 1) —_ #At:l

G(t)

e 9¢(s)
+ At Q2(ty,s;t)=——ds for ¢, >0, (3.3)
e Ge(s)

€
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Qupolts + At + AL) = Qupolta;t) { Até((t,)) /{At for t; >0, (3.4)

CQo(t+ Aty =

Qu(e)(1 ~ 0) + 288 [ 7(Qu g5 + Quilsit)+ Qualsit) ks, (33)

When a repair is.completed in (t, t+ At), we get another set of equations as following:
ALQy(L, + AL, 03¢ + AL) =

f BAHRuLED) + Qualtii) + Qupoltiit))  for i<t 4,

] (3.6)
l 0 for ¢y > t* + ¢,

2081Q,, /(01 + AL) = pALQo1), (3.7)
ALQypo(0it + At) = pAL / AQus) + Qip(s) + Qupol))ds.  (38)

In all of Eqs.(3.1) to (3.6). the values of t; are greater than zero. As t — o, Q,(t,,t
2t Qi) — Quft): — Q.fh): Qz {t,:t) — Qlyp(tl): Qx-p'o(tl:t) - Q«.p‘o(tl): Qo
— Qo. Divide Eqs. (3.1) to (3.4) by At, and let At — @ and take the limit as t — ©o_

Then, the steady - state equations desribing the system are obtained as following :

a ) | ge(ta) -
() o= e [Ea5+ B oo

for 8 < t), &3 <t +¢,

a 91 t) ol ge(s)
ét—lQl./(tl) Ql l( l)( G(t ) +ﬂ) +/(; Qz(tl,S)G¢(3)ds fOt tl > 0)
(3.10)
a _ gi1(t1) Cte 5 ge(s) s fort
g Q) = ~Qu)(Gy i+ [ Q) Zds x>,
(3.11)
a g(t:)
'a—[i'Ql.p,O(tl) —Q1p0(t l)“G(t ) + ¢) for ty > 0. (3.12)
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And from Egs.(3.5) to (3.8) we get another set of equations :

0= —pQo+2 [ «m,u»+Qwu)+Q“mu»§$§ o ea3)
Qa(t1,0) = { g(Ql,j(tl) + Q];p(fq) + Q;I.,p,o(tl)) §01~ :]' ; :: i €, (3.14)
2Q1.j(0) = #Qo- (3-15)

Qupof®) = 4 [ (Qur{s) + Qupls) + Quple))ds. (3.16)

To solve this system of equations, let Q,(t4,t;) = Ry(t1,t2)Ge(t1)G(t2); Q@ y(h) =
Ry 4(t1)G(t); Qup(ts) = Rip(t1)G(t1); Qupo(ts) = Rl,p,O(tl)G(tl); Qo = Ro. The

derivative of Q;, Q1 5, @15, @1,p0, and Qg can be expressed by
3'
Q:(tntz) = —‘Rz(tntz)G (t)G(ta) + R2(tnt2) (G (t,)G (tz)) (3.17)

for1=1,2 and

%@AM=£ﬁMM@M—&M%&L ~ (3.18)
Q:P(tx) Rl p(tl)G(tl) - Ry p(tl)g(t1)7 ,' (3.19)

P a : ,

T 2 Qipo(t1) = R,,,, O(tl)G(tl) - leO(tl)g(h) (3.20)

By substituting Eqs. (3.17) to (3.20) into Eqs. (3.9) to (3.12), the following eqhations

are obtained in terms of R,, R,,, R,,, R'p , and R,

o @ L v
(3t, * o ) Ryfts,t2) =0 for £y, ty <t' +e¢, (3.21)

)
5, Fs(t) = —pls(ta) +/ Ra(t,5)g(s)ds  for &, > 0, (3.22)
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17/ , G,
E:Rl'p(tl) —pR; (4 )-i—/ Ry(ty, )G(( 1)) (s)ds for ¢t; > 0, (3.23)
7]
EZIR‘}P.O(tl) = _F'RLP:O(tl) for _t-l > 0. (3.24)
And from Egs. (3.13) to (3.16).

0= uRo =2 [ (Rusls)+ Rupls) + Rupols)g(s)ds, (3.25)

/L[Rl f(t] + R‘ p(t + Rl PO( )] for tl <t + €,
Ry(ts,0) = (3.26)

0 for t; > t* + ¢,

1

R, 4(0) = 5 1R, (3.27)
Ripo(0) = b [ (Rug() + Ragls) + R pals))G(s)ds. (3.28)

4. The solution of steady - state equations

To solve the set of differential Eqs. (3.21) to (3.28), first, solve Eq. (3.21). The
equation has a general solution, R,(t.,t;) = u(t, - ¢,) where uw is an arbitrary function.
Thus, a constant is also the solution to Eq. (3.21). As & — 0, the solution of the

differential equation is given by
w(t*) for ¢, t, < t°,
Ri(t,t2) = (4.1)

0 otherwise,

where k(t*) is a constant to be determined by boundary conditions.

For t < t‘, G(t) = G(b), J'2, a(s)ds = G(¢t*),

and ft T 0s)ds = G(°).
As € — 0, the solutions of the differential Eqs. (3.22) to (3.24) are given as following :
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ﬂs)G(t‘) 4 age™ for t; < t°,
Ryg(ty) = g ' (4.2)
aje# for t, > t*
- VG40 + boeHh for &, <,
Ryp(th) = g (4.3)
bie™# for t; > t*,
Ry o(t) = cee™®® for t; > 0. (4.4)

We assume that functions Q.s(t) and @ .p(t) are bounded and functions g(t), ge(t),G
(t) and Ge(t) are bounded and continuous functions over an admissible control zone, Set

St = [ /ze‘/-rsG(s)ds. Then as seen in Appendix A, R, and the coefficients a,,q,, b, b,

and ¢, of Eqs. (4.2) to (4.4) are obtained as € — 0,

L ) (45)
l.l

w = 60 - e s(e)), (4.6)
o = L6y + e @) - s, (4.7)
bo = -i(QG(t'), (4.8)

I
b= e ) - e, (49)
co = ) g 540y, (4.10)

I

By substituting the coefficients a,, @, &, b and c, into Eqgs. (4.2) to (4.4), we get the

solution of the steady - state equations as following :
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&(t*) for t, < t°,
Roltatz) = (4.11)

0 otherwise,

5—%.—2(G'(t‘)+ G(t‘)e"#t: _ S(t’)ep-(t'—tl)) . ‘ fOl‘ t, < t°,

Ruy(ta) = (4.12)
HEVG() + Gt ) — S(E)e Je™n  for by 21,
MG - ) forty <t
Ry p(th) = (4.13)

LG Y (e — e forty 2 U7,
"

&(t%)

By po(ta) = 51 )e ™M) for ty > 0, (4.14)
I
2e(t" .
Mo = _'_(2_)(1 — "' 5(t")). (4.15)
i

This solution set satisfies all of Eqs. (3.21) to (3.28). Since these equations completly
describe the system, this is the required solution, Thus, the basic probability density

function for a particular state are obtained as following :

K(*)Ge(t:)Ge(ta) for t; < t°,
Qu(ts,t2) = { ‘ (4.16)

0 otherwise,

LOG(tr) + G(E)e s — S(E )X )G(t)  Hor by < ¢,

Qr.5(1h) = : .
“OUG) + G = S(t7)e ) 1 G(ta)  for ty 217,
(4.17)
ﬁ(ﬁjé(t.)(l —eHh )G(tl) fort; < t°, (4 18)
Ql. (Ll) = . : .
’ HAOG(E Y e ~1)e™G(l)  forty 2 7,
Q1 po(ts) = f%—)e"“"S(t’)e"“'G(t,) fort; >0, - (4.19)
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Qo= 281 - e 5(e0)) (4.20)
7 v

The steady-state probability for a particular state is obtained by integrating the density
fungtion for a patricular state. Note that ‘Q..f(t.) Q..p"(t.). and Qi.plo'(tl) are the
probability density function associated with one particular machine, _Since we have
assumed that both machines are identical, the steady - state probability of states (1.f), (1,
p) and (g, p, 0) are 2[,°Q .((s)ds. 2[.°@Q.,,(s)ds, and 2 [,*°Q,,, . (s)ds, respectively,
Set St) = [l - e™)G(s)ds and [,'G(s)ds and m(t) =/, 'G(s)ds Then the steady- state

probability for each state are as following :

wt)= [ [ Qulep)dady = ol () (121
a () = 2“‘55'){ /0 C(GU) + G )e ™ — S(17)e ) G (s)ds
+ (G(t*) + G(t*)e — S(t")e™ )%S(t‘)}, (4.22)
auslt) = Z 61800 + (e - D3, (4.23)
o 26 e
QI.p.O(t ) = —”2_'6“ S(t )S(O)’ (4'24)
qo(t.')-z 2—'?—5:;){1 — Mt S(t*)}- (4.25)

The coefficient k(t*) is determined by the norming equation

@(t") + @1 (t7) + (") + qrp0(t’) -+ QO(i‘) =1, (4.26)

thus, .
w(t7) = {2 + 2a(e) + mi(e)) 1. (4.27)
"
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5. Expected number of visits

The cost function defined in Eq. (2.5) is the function of steady- state probability of
each s:tate i € E and expected number of viéits to each state per ‘unit time is the function
of mean sojourn time of each state as seen in Eq. (2.9). Thus the expected number of
visits to each state per unit time of state i € E under control limit t*(mi(t*)), we need the
information about age distribution at the arrival epoch of each state i € E.

Now, let us consider the mean sojourn time for each state. Mean sojourn time at state
(0)is simple, since the service time distribution is assumed to bé an exponential

distribution with mean s, therefore.

me(t*) = l (5.1)
"

For the other states, the mean sojourn time is slightly more complicated because the age
distribution at an arrival epoch of each state has to be considered. For the mean sojourn
time at state (2), first consider the age distibution at the arrival epoch of state (2). State
{2) can be entered through the state (1, f), (I,p), and '(1.p,0)as soon as the repair
service of a down machine has been completed and the age of running machine is less
than t“. Therefore, at the arrival epoch of state (2), one of the machines is a brand new
machine and the other machine is age of between 0 and t‘. Thus the age density at- the

arrival epoch of state (2) is

Q3(1) = Q2ts,0) for ¢, < ¢°. (5.2)

Let H,o(s) denote the conditional probability distribution of failure time given that two
machines are working, one machine being of age t and the other machine beimg of age
0. and let Hy o, = 1 - Hy,(s), then

G(t: + s)G(s)

&(6)G(0) (5:3)

E‘x.ﬂts) =
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The conditional mean sojourn time that two machines of age tand ( are working is

defined by

te—21

My olt”) = / A, o(s)ds. (5.4)

Since both machines are assumed to be identical, the mean sojourn time of state (2) is

given by substituting Eq. (4.16)

fz,:o Jigt Hy, o(5)Qa(ty,0)dsdty
Ji 20 Qa(t1,0)dty

1 tt e
E /,=o G(s) /tl=, G(t,)dt,ds. (5.5)

Next, consider the age distibution at an arrival epoch of state(l,p). State(l,p)

mz(t')

represents the situation where one machine is running and can be entered from state (2)
due to the control limit t* Thus, just before the machine replacement operation,one of
the machines is at age of t* and the other machine is at age less than t* Thus. the age

distribution at arrival epoch of state(l,p) is given by

Q1) = Qz(tl,t‘) for t, <t". (5.6)

Let Fu (s) denote the condxtxonal probability distrbution of survival time given that one

machine is working, and the age of the machine is ¢ that is Ft,(s) = Gats , then the
6“.)

conditional mean sojourn time at age & at an arrival epoch of state (1,p) is given by

My, (1°) = /.:o F, (s)e™#ds. (5.7)

Thus, the mean sojourn time of state(l,p) is given by

my (1Y) = t,—of:o Fg,(s)e HeQa(t,t* )dsdtl
[y Qalts, )ty

1 - '
= * ti. .
i oo /_O Gty + s)dsdt, (5.8)
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By the definition of state{l,p,0). the age of the working machine at an arrival epoch of

state (1, p,0)is always §,ie, a new machine  Therefore, the mean sojourn time of state(1,

p,0)is given by

mypo(t’) = /:o e #*G(s)ds. | (5.9)

Thus the expecied number of visits to each state per unit time, except for state (1,f, can
be computed by using Eq. (2.9).

The age distribution at the arrival epoch of state (1,f) is more complicated than those
of other states. Qur interest is to find the expected number of visits to state(l.f).
Therefore, a different approach will be used, Let us examine the graph in Figue (2.1)
which describes the flow of the system. By the definition of state (1,f) in section 2, visits
to state (I.f) are from state (2) due to machine failure, or are from state (0). Since the
number of visits to state (I,f) from state (0) must equal the number of visits to state (0).

we have that the expected number of visits to state (1.f) per unit time (7, ((t*}) is

mg(t7) = no(t") + 72(L") — m0(t7)- (5.10)

VI. Algorithm for obtaining the optimal control fimit

In this section, we develop an algorithm that will yield an € - optimum control limit, That
is, for a fixed € ) 0, the algorithm will determine a control limit whose objective function
value is within € of the optimum value, The algor‘ithm' uses a bounding technique
developed by Ritchken and Wilson (1988).

The idea of the procedure is to identify an admissible control zone in. which the optimum
must exist. The admissible control zone is then partitioned and, through the use of a
bound, some of the intervals of the partition are discarded. thus reducing the admissible
control zone, With the reduced admissible control zone, the partitioning and further

reduction is repeated.

_Assume we start with an admissible control zone given by the interval D, = (a, o0), Let
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A > 0 be given and define a partition o = ¢ (t ( - - - ¢ (o where t - t; = A,
for i = 1 - - -, m. Associated with this partition are bounding function- B and B,,
defined in Appendix B, (The computational procedure for the bounding functions, although
straight forward, is tedious so we have given them in the appendix.) the key properties of

the bounding functions are

€(t) > C(k) ~ Bi(t,t:) for ;1 <t<t, (6.1)
By(t;_1,t;) > 0 and Jim By(ti1,:) =0  monotonically, (6.2)
- C(1) Z‘C'(tk)—Bz(tk,t) for t>ty, (6.3)
Bz(tk,t); 0 and lim By(ty,¢) =0  monotonically, (6.4)

where C(t) is the objective function (2.5). The first property (6.1) can be rephrased
slightly so that a portion of the partition can be eliminated from the admissible control

zone . Namely, suppose we have for some t,t, and t, & (¢, t]) the following condition

C(ta) < C(t2) = Bi(ta, ta), (6.5)

then the minimum value for C cannot occur in the interval (t,t ).

The expressions (6.2) and (6.4) show that as A, (and thus distance between t. and ¢
goes to zero, the functions Band B, are monotonically decreasing. tozero. Hence, it is
possible to get arbitrarly close to the optimal cost by choosing appropriately A. small
enough . .

The algorithm of obtaining the € - optimum requires a preliminary operation, For a given
admissible control region D, = (a, @), we establish an upper bound on t of the admis-
sible control region in this opoeration. There are 3 elements that have to be specified in

the preliminary operation .

PRELIMINARY OPERATION

ELEMENT 1. Fix a partition increment A4 and set ¢, = a for k = 0.

ELEMENT 2. Calculate C(ti) and C(tx) — Ba(t,00) from Eq. (B.32) given
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in Appendix B.

ELEMENT 3. Let C* = min;zo,..xC(t;). If C* > C(t,) — Baftk,0), let
try1 =t + Do and set k = k + 1; go to Element 2; otherwise, ¢4

is'upper bound.

After preliminary operation,the new admissible control» regién is given by the closed in-
terval D, = (a,b),

Now, the algorithm can be abp]ied to a specified problem. To give the general
procedure, we assume that the algorithm is currently working with an admissible control

region, D, and we would like to determine the next, smaller, admissible control region,

Dn+1.

ALGORITHM

Step 1. Fix a partition increment Ay and determine the patition. t,, t, - - -, tk
such that tj ~tj, = Apfori=1, - - -  k-landt -t-1< Qg

STEP 2.,>Calcu1ate C(tj) for i=0, - - -. kand C(t;) - B, (tiq. t;) for
i=1, - - ,.ik from Eq. (B.21) in A ppendix B,

Step 3. Let C* = min ;o ..., C(ty and C;* = min;_,.- - -k Clt) - Bi (4 ti).
STEP 4. Determine new admissible control zone D, ; deleting all intervals

{4y t) from Dy such that C(t;) - B, (t,; t;) < C*%
Step 5. If C*-C *) ¢, fix A,y such that Ay, (A, and determine new

partition &, &, - - -, & such that t-t, = Ay fori=1, - -, k-1

and & -t < Ap+1. Go to Stop 2: otherwise C#is the ¢ - optimum,

NUMERICAL EXAMPLE

Times to failure for each machine are assumed to be a phase -type distribuﬁon with

cumulative distribution given by

G(z) = P(X<z}=1- « eT=1, for = >0, (6.6)
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where a = (1.0.0) and

—02 018 0 0.02
T=| 0 -04 036 T = {004,/
0 0 -05 0.5

and when a machine fails._ it 1s repairéd and the repair times are exponentially distributed

with rate yt = 2.0, The cost data set are given by (cp ¢, cg) = (450, 70, 50) .

Table 6.1 Establishing an upper bound on t.

t Cltr) Cltx) — By(1,. )
4.0 82.70 -773.3¢

6.0 84.26 -199.02

8.0 88.25 39.16
10.0 91.91 24.60
12.0 94.75 55.79
14.0 96.81 73.00
16.0 98.26 83.22
18.0 99.26 89.56

Table 6.1. contains values of C(t,) and C(t) - B,(t,, «) for various values of t,. We
establish an upper bound of t by increasing ¢, until a value C(t,) - B,(t,, ©) reachers a

previously computed E(tk) value, Thus new admissible control region, D,, is (1, 16).

Teble 6.2, Improving the lower and upper boynds on 5.

L C(t:) C(t;) = Bi(ti_y,t:) t; C(t;) C(t;) — Bi(tioa,ts)

. . . 4.41 82.48437 81.10210
3.11 85.29537 82.56325 *¥4.42 82.48432 81.10850
3.12 85.24293 82.56692 4.43 82.48448 81.11508
3.13 85.19116 82.49114 4.44 82.48456 81.12183
3.14 | 85.14005 82.45590
3.15 | 85.08961 82.42119

. . . 5.44 83.3405 82.4591

-4.08 82.6126 81.00078 545 83.3530 82.4773

4.10 82.6045 81.00061 5.46 '83.3696 82.4955
4.11 82.5967 81.00067 547 83.3844 82.5137
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Table 6.2 evaluates the values C(t;) and the lower bound C(t)- B,(t, tj} over set D,
when A, is 0.01. The current best solution is 4 42 with its cost 82.48432.
The minimun of the lower bound of the cost is 81.00061 when t = 4,10 Thus the maximum
possible cost error is 1.4837(1.83%) Noe that there is a some range of t where the lower
bound' exeeds the current best cost (82.48432) . Therefore we:get the new search region
D,= (3.13, 5.45)

o Table 6.3.  Finer partition for better solution.

A, Optimal T* C(T) - Max error (%)
0.01 4.42 82.48432 - 1.4837 (1.83%)
0.001 4.417 82.48431892 | 0.06968 (0.084%)
0.0002 - 4.4174 82.48431867 0.02751 (0.032%)

Table 6.3 shows the sequence of iterations fo_r finer partitons_ The current best solution
is provided together with its maximum possible error, After 3 iterations for finer partitions,
it is possible to get the current best solution T* = 4 4174 and its optimal cost 8248431867
with maximum error 0.02751 (0.032%) .
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