• Title/Summary/Keyword: Optimal power flow

Search Result 546, Processing Time 0.023 seconds

On-line Optimal EMS Implementation for Distributed Power System

  • Choi, Wooin;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.33-34
    • /
    • 2012
  • As the distributed power system with PV and ESS is highlighted to be one of the most prominent structure to replace the traditional electric power system, power flow scheduling is expected to bring better system efficiency. Optimal energy management system (EMS) where the power from PV and the grid is managed in time-domain using ESS needs an optimization process. In this paper, main optimization method is implemented using dynamic programming (DP). To overcome the drawback of DP in which ideal future information is required, prediction stage precedes every EMS execution. A simple auto-regressive moving-average (ARMA) forecasting followed by a PI-controller updates the prediction data. Assessment of the on-line optimal EMS scheme has been evaluated on several cases.

  • PDF

OPF Algorithm of changing inequality constraint to equality constraint (부등호 제약조건의 등호제약조건화를 통한 OPF해석 알고리즘)

  • Choi, J.H.;Kim, K.J.;Jeon, D.H.;Rhim, C.H.;Lee, B.R.;Han, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.197-199
    • /
    • 1999
  • This paper deals with optimal power flow, which is optimal problem with equality constraint and inequality constraint. A algorithm of changing two constraints problem to one constraint - equality constraint problem - that make it analytical access for optimal power flow is presented.

  • PDF

Contact oxide etching using $CHF_3/CF_4$ ($CHF_3/CF_4$를 사용한 콘택 산화막 식각)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.774-779
    • /
    • 1995
  • Process optimization experiments based on the Taguchi method were performed in order to set up the optimal process conditions for the contact oxide etching process module which was built in order to be attached to the cluster system of multi-processing purpose. In order to compare with Taguchi method, the contact oxide etching process carried out with different process parameters(CHF$_{3}$/CF$_{4}$ gas flow rate, chamber pressure, RF power and magnetic field intensity). Optimal etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. In this paper, as a final analysis of experimental results the optimal etching characteristics were obtained at the process conditions of CHF3/CF4 gas flow rate = 72/8 sccm, chamber pressure = 50 mTorr, RF power = 500 watts, and magnetic field intensity = 90 gauss.

  • PDF

Optimal Power Control Strategy for Wind Farm with Energy Storage System

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.726-737
    • /
    • 2017
  • The use of energy storage systems (ESSs) has become a feasible solution to solve the wind power intermittency issue. However, the use of ESSs increases the system cost significantly. In this paper, an optimal power flow control scheme to minimize the ESS capacity is proposed by using the zero-phase delay low-pass filter which can eliminate the phase delay between the dispatch power and the wind power. In addition, the filter time constant is optimized at the beginning of each dispatching interval to ensure the fluctuation mitigation requirement imposed by the grid code with a minimal ESS capacity. And also, a short-term power dispatch control algorithm is developed suitable for the proposed power dispatch based on the zero-phase delay low-pass filter with the predetermined ESS capacity. In order to verify the effectiveness of the proposed power management approach, case studies are carried out by using a 3-MW wind turbine with real wind speed data measured on Jeju Island.

Application of Parallel PSO Algorithm based on PC Cluster System for Solving Optimal Power Flow Problem (PC 클러스터 시스템 기반 병렬 PSO 알고리즘의 최적조류계산 적용)

  • Kim, Jong-Yul;Moon, Kyoung-Jun;Lee, Haw-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1699-1708
    • /
    • 2007
  • The optimal power flow(OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, the OPF problem has been intensively studied and widely used in power system operation and planning. In these days, OPF is becoming more and more important in the deregulation environment of power pool and there is an urgent need of faster solution technique for on-line application. To solve OPF problem, many heuristic optimization methods have been developed, such as Genetic Algorithm(GA), Evolutionary Programming(EP), Evolution Strategies(ES), and Particle Swarm Optimization(PSO). Especially, PSO algorithm is a newly proposed population based heuristic optimization algorithm which was inspired by the social behaviors of animals. However, population based heuristic optimization methods require higher computing time to find optimal point. This shortcoming is overcome by a straightforward parallel processing of PSO algorithm. The developed parallel PSO algorithm is implemented on a PC cluster system with 6 Intel Pentium IV 2GHz processors. The proposed approach has been tested on the IEEE 30-bus system. The results showed that computing time of parallelized PSO algorithm can be reduced by parallel processing without losing the quality of solution.

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column (진동수주형 파력발전구조물의 최적형상에 대한 검토)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Baek, Dong-Jin;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.345-357
    • /
    • 2011
  • Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

OPTIMAL REACTIVE POWER AND VOLTAGE CONTROL USING A NEW MATRIX DECOMPOSITION METHOD (새로운 행렬 분할법을 이용한 최적 무효전력/전압 제어)

  • Park, Young-Moon;Kim, Doo-Hyun;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.202-206
    • /
    • 1989
  • A new algorithm is suggested to solve the optimal reactive power control(optimal VAR control) problem. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables- the transformer tap positions, generator terminal voltages and switchable reactive power sources. The method developed herein employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, Load flow module for computational error adjustments. In particular, the acceleration factor technique is introduced to enhance the convergence property in Q-module, The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to the sample system and other worst-case system demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

Optimal Reactive Power and Voltage Control Using A New Matrix Decomposition Method (새로운 행렬 분할법을 이용한 최적 무효전력/전압제어)

  • 박영문;김두현;김재철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.232-239
    • /
    • 1990
  • A new algorithm is suggested to solve the optimal reactive power and voltage control (optimal VAR control) problem. The model minimizes the real power losses in the system. The constraints include the reactive power limits of the generators, limits on the bus voltages and the operating limits of control variables-the transformer tap positions generator terminal voltages and switchable reactive power sources. The method presented herein, using a newly developed Jacobian decomposition method, employs linearized sensitivity relationships of power systems to establish both the objective function for minimizing the system losses and the system performance sensitivities relating dependent and control variables. The algorithm consists of two modules, i.e. the Q-V module for reactive power-voltage control, and load flow module for computational error adjustments. In particular the acceleration factor technique is introduced to enhance the convergence property in Q-V module. The combined use of the afore-mentioned two modules ensures more effective and efficient solutions for optimal reactive power dispatch problems. Results of the application of the method to a sample system and other worst-case systems demonstrated that the algorithm suggested herein is compared favourably with conventional ones in terms of computation accuracy and convergence characteristics.

  • PDF

NIPM -Based Optimal Power Flow Including Discrete Control Variables (이산 제어 변수를 포함한 비선형 내점법 기반 최적조류계산)

  • Rodel, D. Dosano;Song, Hwa-Chang;Kim, Tae-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.226-228
    • /
    • 2007
  • This paper proposes Nonlinear Interior Point Method (NIPM) including discrete control variables optimal power flow formulations. The algorithm utilizes the robustness in terms of starting point and fast convergence for large scale power system of NIPM and an introduction of rounding penalty function which is augmented in the Lagrangian function to handle discrete control variables. The derived formulation shows a simplified approach to deal with discrete control problems which is implementable in real large scale systems.

  • PDF