DOI QR코드

DOI QR Code

진동수주형 파력발전구조물의 최적형상에 대한 검토

Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column

  • 이광호 ((일) 나고야대학교 공학연구과 사회기반공학) ;
  • 박정현 (한국해양대학교 토목공학과) ;
  • 백동진 (한국해양대학교 토목공학과) ;
  • 조성 (K-water, 경인항만건설단) ;
  • 김도삼 (한국해양대학교 토목공학과)
  • Lee, Kwang-Ho (Departments of Civil Engineering, School of Engineering, Nagoya University) ;
  • Park, Jung-Hyun (Department of Civil Engineering, Korea Maritime University) ;
  • Baek, Dong-Jin (Department of Civil Engineering, Korea Maritime University) ;
  • Cho, Sung (K-water) ;
  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
  • 투고 : 2011.07.22
  • 심사 : 2011.10.17
  • 발행 : 2011.10.31

초록

최근 지구환경문제와 에너지원의 다각화를 위한 일환으로 파랑에너지를 이용하는 신재생에너지의 기술개발이 유럽과 일본 등을 중심으로 활발히 추진 및 실용화되고 있다. 특히, 케이슨 내의 공기실에서 파랑에 의한 수면의 상하운동으로 유도되는 공기흐름을 이용하는 진동수주형 파력발전시스템은 가장 효율적인 파랑에너지흡수장치로 알려져 있고, 따라서 상업화에 가장 근접한 파력발전장치 중에 하나이다. 본 연구에서는 진동수주형 파력발전구조물에서 터빈(Wells터빈)에 직접 작용하는 공기흐름속도를 2차원 및 3차원수치실험으로부터 검토하며, 이 때 형상의 변화에 따른 공기의 최대흐름속도를 추정하여 진동수주형 파력발전구조물의 최적형상을 논의한다. 수치해석에서는 기체와 액체의 혼상동적현상을 동일한 지배방정식으로 해석하는 혼상류(2상류)수치모델에 기초한 3차원수치파동수로를 적용하였다. 이로부터 입사주기대에 따라 최적형상의 크기가 상이하게 나타나는 것을 확인할 수 있었고, 최소의 반사율이 발생하는 주기 대에서 공기흐름이 최대로 된다는 것을 알 수 있었다.

Recently, as part of diversifying energy sources and earth environmental issues, technology development of new renewable energy using wave energy is actively promoted and commercialized around Europe and Japan etc. In particular, OWC(Oscillating Water Column) wave power generation system using air flow induced by vertical movement of the water surface by waves in an air-chamber within caisson is known as the most efficient wave energy absorption device and therefore, is one of the wave power generation apparatus the closest to commercialization. This study examines air flow velocity, which operates turbine(Wells turbine) directly in oscillating water column type wave power generation structure from two-and three-dimensional numerical experiments and discusses optimal shape of oscillating water column type wave power generation structure by estimating the maximum flow rate of air according to change in shape. The three-dimensional numerical wave flume was applied in interpretation for this study which is the model for the immiscible two-phase flow based on the Navier-Stokes Equation. From this, it turned out that size of optimal shape appears differently according to the incident wave period and air flow is maximized at the period where minimum reflection ratio occurs.

키워드

참고문헌

  1. 경조현, 홍사영, 홍도천 (2006). 진동수주형 파력발전기의 에너지 흡수효율 해석. 한국해양공학회지, 20(4), 64-69.
  2. 조일형 (2002). 원통형 진동수주 파력발전장치에 의한 파 에너지흡수. 한국해안.해양공학회지, 14(1), 8-18.
  3. 최영도, 이영호 (2007). 파력발전의 개요 및 연구개발 현황. 한국태양에너지학회지, 6(1), 17-24.
  4. Akiyama, M. and Aritomi, M. (2002). Advanced numerical analysis of two-phase flow dynamics multi-dimensional flow analysis. Corona Publishing Co., LTD. Tokyo, Japan.
  5. Amsden, A.A. and Harlow, F.H. (1970). The SMAC method : a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Laboratory Report LA-4370, Los Alaomos, N.M.
  6. Boccotti, P. (2007a). Comparison between a U-OWC and a conventional OWC, Ocean Engineering, 34, 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  7. Boccotti, P. (2007b). Caisson breakwaters embodying an OWC with a small opening - Part I : Theory. Ocean Engineering, 34, 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  8. Bonke, K. and Ambli, N. (1986). Prototype wave power stations in Norway. Proceedings of International Symposium on Utilization of Ocean Waves-Wave to Energy Conversion, ASCE, 34-45.
  9. Delaure, Y.M.C. and Lewis, A.(2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, 30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  10. EI Marjani, A., Castro Ruiz, F., Rodriguez, M.A. and Parra Santos, M.T. (2008). Numerical modelling in wave energy conversion systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  11. Evans, D.V. and Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, 17, 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  12. Evans, D.V. and Porter, R. (1997). Efficient calculation of hydrodynamic properties of OWC-type devices. J. Offshore Mech. and Article Eng., 119, 210-218. https://doi.org/10.1115/1.2829098
  13. Falcao, A.F. de O. (2000). The shoreline OWC wave power plant at the Azores. Proceedings of 4th European Wave Energy Conference, 42-47.
  14. Falcao, A.F. de O. (2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, 24, 73-82. https://doi.org/10.1016/S0141-1187(02)00021-4
  15. Falcao, A.F. de O. (2010). Wave energy utilization : A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  16. Falcao, A.F. de O. and Justino, P.A.P. (1999). OWC wave energy devices with air flow control. Ocean Engineering, 26, 1275-1295. https://doi.org/10.1016/S0029-8018(98)00075-4
  17. Falcao, A.F. de O. and Rodrigues, R.J.A. (2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, 24, 59-71. https://doi.org/10.1016/S0141-1187(02)00022-6
  18. Gervelas, R., Trarieux, F. and Patel, M. (2011). A time-domain simulator for an oscillating water column in irregular waves at model scale. Ocean Engineering, 38, 1-7. https://doi.org/10.1016/j.oceaneng.2010.10.016
  19. Gouaud, F., Rey, V., Piazzola, J. and Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57, 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  20. Greenhow, M. and White, S.P. (1997). Optimal heave motion of some axisymmetric wave energy devices in sinusoidal waves. Applied Ocean Research, 19, 141-159. https://doi.org/10.1016/S0141-1187(97)00020-5
  21. Heath, T., Whittaker, T.J.T. and Boake, C.B. (2000). The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland). Proceedings of 4th European Wave Energy Conference, 49-55.
  22. Hirt. C. W. and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  23. Josset, C. and Clément, A.H. (2007). A time-domain numerical simulator for oscillating water column wave power plants. Renewable Energy, 32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  24. Kunugi, T. (2000). MARS for multiphase calculation. CFD J. 9(1), IX-563.
  25. Lesieur, M., Metais, O. and Comte, P. (2005). Large-eddy simulations of turbulence. Cambridge Univ. Press, New York, N.Y..
  26. Malmo, O. and Reitan, A. (1985). Wave-power absorption by an oscillating water column in a channel. J. Fluid Mech., 158, 153-175. https://doi.org/10.1017/S0022112085002592
  27. Martines, E., Ramos, F.S., Carrilho, L., Jistino, P., Gato, L., Trigo, L. and Neumann, F. (2005). CeoDouro project: overall design of an OWC in the new Oporto breakwater. Proceedings of 6th European Wave Tidal Energy Conference, 273-280.
  28. McCormick, M.E. (1981). Ocean wave energy conversion. Dover Publications, Inc..
  29. Miyata, H. and Nishimura, S. (1985). Finite-difference simulation of nonlinear waves generated by ships of arbitary three-dimensional configuration. J. Comput. Phys., 60, 391-436. https://doi.org/10.1016/0021-9991(85)90028-2
  30. Nakamura, T. and Nakahashi, K.(2005). Effectiveness of a chamber- tpye water exchange breakwater and its ability of wave power exteractions by wave induced vortex flows. Proceedings of Civil Engineering in the Ocean, 21, 547-552 (in Japanese).
  31. Ohneda, H., Igarashi, S., Shinbo, O., Sekihara, S., Suzuki, K. and Kubota, H. (1991). Construction procedure of a wave power extracting caisson breakwater. Proceedings of 3rd Symposium on Ocean Energy Utilization, 171-179.
  32. Paixao Conde, J.M. and Gato, L.M.C. (2008). Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, 33, 2637-2644. https://doi.org/10.1016/j.renene.2008.02.028
  33. Ravindran, M. and Koola, P.M. (1991). Energy from sea waves-the Indian wave energy program. Current Science, 60, 676-680.
  34. Rudman, J.D. (1997). Volume-tracking methods for interfacial flow calculation. Int. J. Numer. Methods in Fluids, 24, 671-691. https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  35. Smagorinsky, J. (1963). General circulation experiment with the primitive equations. Mon, Weath. Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  36. Tome, M.F. and McKee, S. (1994). GENSMAC : A computational marker and cell method for free-surface flows in general domain. J. of Comput. Phys., 110, 171-186. https://doi.org/10.1006/jcph.1994.1013
  37. Torre-Enciso, Y., Ortubia, I., Lopez de Aguileta, L.I. and Marques, J. (2009). Mutriku wave power plant: from the thinking out to the reality. Proceedings of 8th European Wave Tidal Energy Conference, 319-329.
  38. Tseng, R.S., Wu, R.H. and Huang, C.C. (2000). Model study of a shoreline wave-power system. Ocean Engineering, 27, 801-821. https://doi.org/10.1016/S0029-8018(99)00028-1
  39. Yin, Z., Shi, H. and Cao, X. (2010). Numerical simulation of water and air flow in oscillating water column air chamber. Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, 796-801.
  40. 中村孝幸(1999). 透過波の反射波の低減を可能にするカ一テン防波堤の構造型式について. 海岸工学論文集, 第46卷, 786-790.
  41. 沿岸開發技術硏究センタ(2001). CADMAS-SURF數値波動水路の開發.硏究.
  42. 神野充輝(2001). 垂下版式反射波低減工のエネルギ-逸散機構とその果にする硏究. 修士位論文, 愛媛大.
  43. 中村孝幸, 大村智宏, 大井邦昭 (2003). 渦流制御を利用する海水交換促進型防波堤の效果について. 海岸工學論文集, 第50卷, 806-810.

피인용 문헌

  1. Estimation of slamming coefficients on local members of offshore wind turbine foundation (jacket type) under plunging breaker 2017, https://doi.org/10.1016/j.ijnaoe.2017.03.006
  2. Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column vol.26, pp.4, 2014, https://doi.org/10.9765/KSCOE.2014.26.4.225
  3. A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods vol.137, 2017, https://doi.org/10.1016/j.oceaneng.2017.03.045
  4. Dynamic Response Analysis of Pneumatic Floating Breakwater Mounted Wave-power Generation System of Oscillating Water Column vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.305
  5. 3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.242