• Title/Summary/Keyword: Optimal path

Search Result 1,217, Processing Time 0.04 seconds

Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics (로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색)

  • 박종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

On Finding an Optimal Departure Time in Time-Dependent Networks

  • Park, Chan-Kyoo;Lee, Sangwook;Park, Soondal
    • Management Science and Financial Engineering
    • /
    • v.10 no.1
    • /
    • pp.53-75
    • /
    • 2004
  • Most existing studies on time-dependent networks have been focused on finding a minimum delay path given a departure time at the origin. There, however, frequently happens a situation where users can select any departure time in a certain time interval and want to spend as little time as possible on traveling the networks. In that case. the delay spent on traveling networks depends on not only paths but also the actual departure time at the origin. In this paper, we propose a new problem in time-dependent networks whose objective is to find an optimal departure time given possible departure time interval at the origin. From the optimal departure time, we can obtain a path with minimum delay among all paths for possible departure times at the origin. In addition, we present an algorithm for finding an optimal departure time by enumerating trees which remain shortest path tree for a certain time interval.

Planning a Time-optimal path for Robot Manipulator Using Hopfield Neural Network (홉필드 신경 회로망을 이용한 로보트 매니퓰레이터의 최적시간 경로 계획)

  • 조현찬;김영관;전홍태;이홍기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1364-1371
    • /
    • 1990
  • We propose a time-optimal path planning scheme for the robot manipulator using Hopfield neural network. The time-optimal path planning, which can allow the robot system to perform the demanded tasks with a minimum execution time, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to apply the neural networke technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning by using Hopfield neural network. The effectiveness of the proposed method is demonstrarted using a PUMA 560 manipulator.

  • PDF

A Link-Label Based Node-to-Link Optimal Path Algorithm Considering Non Additive Path Cost (비가산성 경로비용을 반영한 링크표지기반 Node-to-Link 최적경로탐색)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2019
  • Existing node-to-node based optimal path searching is built on the assumption that all destination nodes can be arrived at from an origin node. However, the recent appearance of the adaptive path search algorithm has meant that the optimal path solution cannot be derived in node-to-node path search. In order to reflect transportation data at the links in real-time, the necessity of the node-to-link (or link-to-node; NL) problem is being recognized. This research assumes existence of a network with link-label and non-additive path costs as a solution to the node-to-link optimal path problem. At the intersections in which the link-label has a turn penalty, the network retains its shape. Non-additive path cost requires that M-similar paths be enumerated so that the ideal path can be ascertained. In this, the research proposes direction deletion and turn restriction so that regulation of the loop in the link-label entry-link-based network transformation method will ensure that an optimal solution is derived up until the final link. Using this method on a case study shows that the proposed method derives the optimal solution through learning. The research concludes by bringing to light the necessity of verification in large-scale networks.

Cellular Parallel Processing Networks-based Dynamic Programming Design and Fast Road Boundary Detection for Autonomous Vehicle (셀룰라 병렬처리 회로망에 의한 동적계획법 설계와 자율주행 자동차를 위한 도로 윤곽 검출)

  • 홍승완;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.465-472
    • /
    • 2004
  • Analog CPPN-based optimal road boundary detection algorithm for autonomous vehicle is proposed. The CPPN is a massively connected analog parallel array processor. In the paper, the dynamic programming which is an efficient algorithm to find the optimal path is implemented with the CPPN algorithm. If the image of road-boundary information is utilized as an inter-cell distance, and goals and start lines are positioned at the top and the bottom of the image, respectively, the optimal path finding algorithm can be exploited for optimal road boundary detection. By virtue of the parallel and analog processing of the CPPN and the optimal solution of the dynamic programming, the proposed road boundary detection algorithm is expected to have very high speed and robust processing if it is implemented into circuits. The proposed road boundary algorithm is described and simulation results are reported.

Development of Optimal Path Planning for Automated Excavator (자동화 굴삭기 최적경로 생성 알고리즘 개발)

  • Shin, Jin-Ok;Park, Hyong-Ju;Lee, Sang-Hak;Hong, Dae-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

A Study on Alternative Paths for Spread of Traffic (교통량 분산을 위한 대체경로 연구)

  • 서기성
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.97-108
    • /
    • 1997
  • For the purpose of decreasing economic loss from the traffic jam, a car route guidance system efficiently utilizing the existing roads has attracted a great deal of attention. In this paper, the search algorithm for optimal path and alternative paths, which is the main function of a car route guidance system, was presented using evolution program. Search efficiency was promoted by changing the population size of path individuals in each generation, applying the concept of age and lifetime to path individuals. Through simulation on the virtual road-traffic network consisting of 100 nodes with various turn constraints and traffic volumes, not only the optimal path with the minimal cost was obtained, avoiding turn constraints and traffic congestion, but also alternative paths with similar costs and acceptable difference was acquired, compared with optimal path.

  • PDF

Time-optimal motions of robotic manipulators with constraints (제한조건을 가진 로봇 매니퓰레이터에 대한 최적 시간 운동)

  • 정일권;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In this paper, methods for computing the time-optimal motion of a robotic manipulator are presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem can be reduced to a search for the time-optimal path in the n-dimensional position space. These paths are further optimized with a local path optimization to yield a global optimal solution. Time-optimal motion of a robot with an articulated arm is presented as an example.

  • PDF

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.