• Title/Summary/Keyword: Optimal moving pattern

Search Result 33, Processing Time 0.029 seconds

Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy (공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석)

  • Lee, Yon-Sik;Kim, Young-Ja;Park, Sung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5015-5022
    • /
    • 2010
  • Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.

Location Generalization of Moving Objects for the Extraction of Significant Patterns (의미 패턴 추출을 위한 이동 객체의 위치 일반화)

  • Lee, Yon-Sik;Ko, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2011
  • In order to provide the optimal location based services such as the optimal moving path search or the scheduling pattern prediction, the extraction of significant moving pattern which is considered the temporal and spatial properties of the location-based historical data of the moving objects is essential. In this paper, for the extraction of significant moving pattern we propose the location generalization method which translates the location attributes of moving object into the spatial scope information based on $R^*$-tree for more efficient patterning the continuous changes of the location of moving objects and for indexing to the 2-dimensional spatial scope. The proposed method generates the moving sequences which is satisfied the constraints of the time interval between the spatial scopes using the generalized spatial data, and extracts the significant moving patterns using them. And it can be an efficient method for the temporal pattern mining or the analysis of moving transition of the moving objects to provide the optimal location based services.

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Optimal Moving Pattern Mining using Frequency of Sequence and Weights (시퀀스 빈발도와 가중치를 이용한 최적 이동 패턴 탐사)

  • Lee, Yon-Sik;Park, Sung-Sook
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.79-93
    • /
    • 2009
  • For developing the location based service which is individualized and specialized according to the characteristic of the users, the spatio-temporal pattern mining for extracting the meaningful and useful patterns among the various patterns of the mobile object on the spatio-temporal area is needed. Thus, in this paper, as the practical application toward the development of the location based service in which it is able to apply to the real life through the pattern mining from the huge historical data of mobile object, we are proposed STOMP(using Frequency of sequence and Weight) that is the new mining method for extracting the patterns with spatial and temporal constraint based on the problems of mining the optimal moving pattern which are defined in STOMP(F)[25]. Proposed method is the pattern mining method compositively using weighted value(weights) (a distance, the time, a cost, and etc) for our previous research(STOMP(F)[25]) that it uses only the pattern frequent occurrence. As to, it is the method determining the moving pattern in which the pattern frequent occurrence is above special threshold and the weight is most a little bit required among moving patterns of the object as the optimal path. And also, it can search the optimal path more accurate and faster than existing methods($A^*$, Dijkstra algorithm) or with only using pattern frequent occurrence due to less accesses to nodes by using the heuristic moving history.

  • PDF

Extracting optimal moving patterns of edge devices for efficient resource placement in an FEC environment (FEC 환경에서 효율적 자원 배치를 위한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.162-169
    • /
    • 2022
  • In a dynamically changing time-varying network environment, the optimal moving pattern of edge devices can be applied to distributing computing resources to edge cloud servers or deploying new edge servers in the FEC(Fog/Edge Computing) environment. In addition, this can be used to build an environment capable of efficient computation offloading to alleviate latency problems, which are disadvantages of cloud computing. This paper proposes an algorithm to extract the optimal moving pattern by analyzing the moving path of multiple edge devices requiring application services in an arbitrary spatio-temporal environment based on frequency. A comparative experiment with A* and Dijkstra algorithms shows that the proposed algorithm uses a relatively fast execution time and less memory, and extracts a more accurate optimal path. Furthermore, it was deduced from the comparison result with the A* algorithm that applying weights (preference, congestion, etc.) simultaneously with frequency can increase path extraction accuracy.

Location Generalization Method of Moving Object using $R^*$-Tree and Grid ($R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.231-242
    • /
    • 2007
  • The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on $R^*$-Tree and Area Grid Hash Table(AGHT) in preprocessing stage of pattern mining.

  • PDF

A Study for Effective Methodology of the Search Pattern of AUV (정지형 수중표적에 대한 수중무인체계의 효율적인 탐색 방법론에 관한 연구)

  • Hur, Junghaeng;Moon, Jungin;Choi, Bongwan;Oh, Hyunseung;Yim, Dongsoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.751-763
    • /
    • 2014
  • The paper is written to determine the optimal search pattern through search effects assessment on underwater targets. 5 types of search patterns are introduced such as, M-type pattern, W-type pattern, rectangular pattern, 4-type pattern and square pattern, In addition, Operational effectiveness analysis model is developed to obtain the optimum search pattern. The algorithms and mathematical models are also suggested to analyze the required search times, AUV's movement patterns, moving distances, overlapping areas and so on.

Extraction of Optimal Moving Patterns of Edge Devices Using Frequencies and Weights (빈발도와 가중치를 적용한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.786-792
    • /
    • 2022
  • In the cloud computing environment, there has been a lot of research into the Fog/Edge Computing (FEC) paradigm for securing user proximity of application services and computation offloading to alleviate service delay difficulties. The method of predicting dynamic location change patterns of edge devices (moving objects) requesting application services is critical in this FEC environment for efficient computing resource distribution and deployment. This paper proposes an optimal moving pattern extraction algorithm in which variable weights (distance, time, congestion) are applied to selected paths in addition to a support factor threshold for frequency patterns (moving objects) of edge devices. The proposed algorithm is compared to the OPE_freq [8] algorithm, which just applies frequency, as well as the A* and Dijkstra algorithms, and it can be shown that the execution time and number of nodes accessed are reduced, and a more accurate path is extracted through experiments.

Optimal Moving Pattern Extraction of the Moving Object for Efficient Resource Allocation (효율적 자원 배치를 위한 이동객체의 최적 이동패턴 추출)

  • Cho, Ho-Seong;Nam, Kwang-Woo;Jang, Min-Seok;Lee, Yon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.689-692
    • /
    • 2021
  • This paper is a prior study to improve the efficiency of offloading based on mobile agents to optimize allocation of computing resources and reduce latency that support user proximity of application services in a Fog/Edge Computing (FEC) environment. We propose an algorithm that effectively reduces the execution time and the amount of memory required when extracting optimal moving patterns from the vast set of spatio-temporal movement history data of moving objects. The proposed algorithm can be useful for the distribution and deployment of computing resources for computation offloading in future FEC environments through frequency-based optimal path extraction.

  • PDF

Sway Control of c Container Crane (Part II): Regulation of the Pendulum Sway through Patternizing Trolley Moving Velocity (컨테이너 크레인의 흔들림 제어 (Part II): 트롤리 주행속도 조절을 통한 진자운동의 제어)

  • Hong, Keum-Shik;Sohn, Sung-Chull;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.132-138
    • /
    • 1997
  • Six different types of velocity profiles of trolley movement of a container crane are investigated for the minimal sway angle at the target trolley position. Three velocity patterns which include trapezoidal, stepped and notched-type velocity patterns are obtained assuming constant rope length. The notched type velocity pattern is shown to be derived from the time-optimal bang-bang control. The stepped type velocity pattern can be shown to be derived as bang-off bang control as well. Considering the damping effect due to hoist motion a double stage acceleration pattern is also analyzed. The main objective of the paper is to show how much time-reduction can be obtained among several velocity patterns appearing in the literature.

  • PDF