• Title/Summary/Keyword: Optimal flow path

Search Result 91, Processing Time 0.027 seconds

Resilient Routing Protocol Scheme for 6LoWPAN (6LoWPAN에서 회복력 있는 라우팅 프로토콜 기법)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.141-149
    • /
    • 2013
  • IETF 6LoWPAN standard technique has been studied in IoT environment to support the IPv6 packet communication. 6LoWPAN protocol for transmission of packets mainly in the AODV routing protocol and a variety of extended techniques have been investigated. In particular, consisting of nodes with limited resources in a network error occurs when the 6LoWPAN reliable data transfer and fast routing method is needed. To this end, in this paper, we propose resilient routing protocol and extension of IETF LOAD algorithm, for optimal recovery path, More specifically, the optimal recovery path setup algorithm, signal flow, and detailed protocols for the verification of the reliability of packet transmission mathematical model is presented. The proposed protocol techniques to analyze the performance of the NS-3 performance through the simulation results that is end-to-end delay, throughput, packet delivery fraction and control packet overhead demonstrated excellence in comparison with existing LOAD.

Steady-State Performance Simulation and Engine Condition Monitoring for 2-Spool Separate Flow Type Turbofan Engine (2-스풀 분리배기 방식 터보팬 엔진의 성능모사 및 진단에 관한 연구)

  • Gong, Chang Deok;Gang, Myeong Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.60-68
    • /
    • 2003
  • In this study, a steady state performance analysis program was developed for a turbofan engine, and its performance was analyzed at installed conditions. For the purpose of evaluation, the developed program was compared with the performance data provided by the engine manufacturer. It was confirmed that the developed program was reliable because the results by the developed program were well agreed with those by the engine manufacturer within 3.5%. The non-linear GPA(Gas Path Analysis) program for performance diagnostics were developed, and selection of optimal measurement variables was studied. Furthermore, in order to investigate effects of the number and the kind of measurement variables, the non-linear GPA was analyzed with various measurement sets. Finally, the measurement parameters selected in the previous step were applied to the fault detection analysis of the 2-spool separate flow type turbofan engine.

Energy-Aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

  • Wei, Yunkai;Zhang, Xiaoning;Xie, Lei;Leng, Supeng
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.559-566
    • /
    • 2016
  • Software defined network (SDN) can effectively improve the performance of traffic engineering and will be widely used in backbone networks. Therefore, new energy-saving schemes must take SDN into consideration; this action is extremely important owing to the rapidly increasing energy consumption in telecom and Internet service provider (ISP) networks. Meanwhile, the introduction of SDN in current networks must be incremental in most cases, for technical and economic reasons. During this period, operators must manage hybrid networks in which SDN and traditional protocols coexist. In this study, we investigate the energy-efficient traffic engineering problem in hybrid SDN/Internet protocol (IP) networks. First, we formulate the mathematical optimization model considering the SDN/IP hybrid routing mode. The problem is NP-hard; therefore, we propose a fast heuristic algorithm named hybrid energy-aware traffic engineering (HEATE) as a solution. In our proposed HEATE algorithm, the IP routers perform shortest-path routing by using distributed open shortest path first (OSPF) link weight optimization. The SDNs perform multipath routing with traffic-flow splitting managed by the global SDN controller. The HEATE algorithm determines the optimal setting for the OSPF link weight and the splitting ratio of SDNs. Thus, the traffic flow is aggregated onto partial links, and the underutilized links can be turned off to save energy. Based on computer simulation results, we demonstrate that our algorithm achieves a significant improvement in energy efficiency in hybrid SDN/IP networks.

Integrated Data Path Synthesis Algorithm based on Network-Flow Method (네트워크-플로우 방법을 기반으로 한 통합적 데이터-경로 합성 알고리즘)

  • Kim, Tae-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.12
    • /
    • pp.981-987
    • /
    • 2000
  • 이 논문은 상위 단계 데이터-경로 합성에서 연산 스케쥴링과 자원 할당 및 배정을 동시에 고려한 통합적 접근 방법을 제시한다. 제안한 방법은 스케쥴링 되어있지 않은 데이터-플로우 그래프에 대해서 수행에 필요한 총 clock 스텝 수와 필요한 회로 면적을 동시에 최소화하는 데이터-경로 생성에 특징이 있다. 일반적으로, 연결선의 결정이 합성의 마지막 단계에서 이루어지는 기존의 방법과는 다르게, 우리의 접근 방법은 연산 스케쥴링과 연산의 연산 모듈 배정 그리고 변수의 레지스터 배정 작업을 동시에 수행하여 추가적인 연결선의 수를 매 clock 스텝마다 최적화(optimal) 시킨다. 본 논문은, 이 문제를 최소-비용의 최대-플로우 문제로 변형하여 minimum cost augmentation 방법으로 polynomial time 안에 해결하는 알고리즘을 제안한다.

  • PDF

Optimal Scheduling in Power-Generation Systems with Thermal and Pumped-Storage Hydroelectric Units

  • Kim, Sehun;Rhee, Minho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.99-115
    • /
    • 1990
  • This paper is concerned with the unit commitment problem in an electric power system with both thermal and pumped-storage hydroelectric units. This is a mixed integer programming problem and the Lagrangean relaxation method is used. We show that the relaxed problem decomposes into two kinds of subproblems : a shortest-path problem for each thermal unit and a minimum cost flow problem for each pumped-storage hydroelectric unit. A method of obtaining an incumbenet solution from the solution of a relaxed problem is presented. The Lagrangean multipliers are updated using both subgradient and incremental cost. The algorithm is applied to a real Korean power generation system and its computational results are reported and compaired with other works.

  • PDF

Optimal Layout for Irrigation Pipeline Networks using Graph Theory (Graph 이론을 이용한 농업용 관수로망의 최적배치)

  • Im, Sang-Jun;Park, Seung-Woo;Cho, Jae-Pil
    • Journal of Korean Society of Rural Planning
    • /
    • v.6 no.2 s.12
    • /
    • pp.12-19
    • /
    • 2000
  • Irrigation pipeline networks consist mainly of buried pipes and are therefore relatively free from topographic constraints. Installation of irrigation pipeline systems is increasing since the systems have several advantages compared to open channel systems. To achieve economic design of pipeline networks, the layout should meet several conditions such as shortest path, maximum flow, and least cost. Graph theory is mathematical tool which enable to find out optimum layout for complicated network systems. In this study, applicability of graph theory to figure out optimum layout of irrigation pipeline networks was evaluated.

  • PDF

Analysis on the Thermal Performance of an Ammonia Unit Cooler (암모니아 유니트 쿨러의 열성능 해석)

  • 최재광;김무근;박병규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1125-1133
    • /
    • 2001
  • Since the surface temperature of the evaporating tube in an ammonia unit cooled is lower than the dew point of atmosphere, the moisture in the atmosphere condenses and the frost grows on the tube. The frost of liquid film decreases the heat transfer rate. The reliable analysis of the heat transfer is required for the prediction of the optimal design of the ammonia unit cooler. For the specific commercial model, the performance was numerical1y estimated for the variation of operating condition and geometric configuration. It is found that there exists an optimum range for the parameters such as mass flow rate of air and refrigerant, humidity, refrigerant quality, fin pitch, the number of step, the number of rows and the pattern of refrigerant path.

  • PDF

Effect of Liquid Circulation Velocity and Cell Density on the Growth of Parietochloris incisa in Flat Plate Photobioreactors

  • Changhai Wang;Yingying Sun;Ronglian Xing;Liqin Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • For more accurately describing the durations of the light and the dark phases of micro-algal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, $70.10\;gm^{-2}d^{-1},\;9.62\%$ and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.

A Study on Link Travel Time Prediction by Short Term Simulation Based on CA (CA모형을 이용한 단기 구간통행시간 예측에 관한 연구)

  • 이승재;장현호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.1
    • /
    • pp.91-102
    • /
    • 2003
  • There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.

Development of Simulator for Designing Unidirectional AGV Systems (일방향 AGV 시스템 설계를 위한 시뮬레이터 개발)

  • Lee, Gyeong-Jae;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.133-142
    • /
    • 2008
  • AGV systems are widely used to increase the flexibility and the efficiency of the material handling systems. AGV systems are one of critical factors which determine the overall performance of the manufacturing systems. To this end, the optimal design for AGV systems is essential. Commercial simulation software is often used as an analysis tool during the design of AGV systems, however a series of procedures are desirable to simplify the analysis processes. In this paper, we present and develop the architecture for unidirectional AGV systems simulator which is able to consider approximate optimal unidirectional flow path and various operational parameters. The designed AGV systems simulator is based on JAVA, and it is developed to support designing approximate optimal unidirectional network by using Tabu search method. In addition, it enables users to design and evaluate AGV systems and to analyze alternative solutions easily. Simulation engine is consists of layout designer, AGV operation plan designer, and integrated AGVS layout designer. Users enter their system design/operation information into input window, then the entered information is automatically utilized for modeling and simulating AGV systems in simulation engine. By this series of procedures, users can get the feed back quickly.

  • PDF