• Title/Summary/Keyword: Optimal driving

Search Result 519, Processing Time 0.042 seconds

The Optimal Sizing and Efficient Driving Scheme of Series HEV (직렬형 HEV의 최적 용량산정과 효율적 운전방안)

  • 허민호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.651-656
    • /
    • 2000
  • This paper describes the optimal sizing of each component using computer simulation and presents the efficient operating scheme of series HEV using hardware simulator the equivalent system. As the sizing method of components have been experimental and empirical it is needed to spend much time and development cost. however the results of computer simulation will set the optimal sizing of components in short time. There are two type of driving control power-tracking mode and load-levelling mode in series HEV. This paper presents that series HEV be operated in the load-levelling mode which is more efficient that power-tracking mode.

  • PDF

Uniqueness of an Optimal Run-up for a Steep Incline of a Train

  • Vu, Xuan
    • International Journal of Railway
    • /
    • v.2 no.2
    • /
    • pp.70-79
    • /
    • 2009
  • An optimal driving strategy of a train in a long journey on a nonsteep track has four phases: an initial power phase, a long hold speed phase, a coast phase and a final brake phase. The majority of the journey is speed holding. On a track with steep gradients, it becomes necessary to vary the strategy around steep sections of track because it is not possible to hold a constant steep on steep track. Instead we must interrupt the speed hold phase with a power phase. The aim of this paper is to show that there is a unique power phase that satisfies the necessary conditions for an optimal journey. The problem is developed and solved for various cases, from a simple single steep gradient to a complicated multiple steep gradient section. For each case, we construct a set of new conditions for optimality of the power phase that minimises the energy used during the power phase subject to a weighted time penalty. We then use the new necessary conditions to develop a calculate scheme for finding an optimal power phase for a steep incline. We also present an example to confirm the uniqueness of an optimal power phase.

  • PDF

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Optimization of Bidirectional DC/DC Converter for Electric Vehicles Based On Driving Cycle

  • Yutao, Luo;Feng, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1934-1944
    • /
    • 2017
  • As a key component of high-voltage power conversion system for electric vehicles (EVs), bidirectional DC/DC (Bi-DC/DC) is required to have high efficiency and light weight. Conventional design methods optimize the Bi-DC/DC at the maximum power dissipation point (MPDP). For EVs application, the work condition of the Bi-DC/DC is not strict as the MPDP, where the design method using MPDP may not be optimal during travel of EVs. This paper optimizes the Bi-DC/DC converter targeting efficiency and weight based on the driving cycle. By analyzing the two-phase interleaved Bi-DC/DC for hybrid energy storage systems (HESS) of EVs, its power dissipation is calculated, and an efficiency model is derived. On this basis, weight models of capacitor, inductor and heat sink are built, as well as a dynamic temperature model of heat sink. Based on these models, a method using New European Driving Cycle (NEDC) for optimal design of Bi-DC/DC which simultaneously considered efficiency and weight is proposed. The simulation result shows that compare with conventional optimization methods revealed that the optimization approach based on driving cycle allowed significant weight reduction while meeting the efficiency requirements.

Effects of Driving Environment on Driver's Posture (주행중 운전자세 측정을 통한 주행조건 영향 분석)

  • Kim, Taeil;Choi, Kwangsoo;Jung, Eui S.;Park, Sungjoon;Choi, Jaeho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • Automotive occupant packaging has been a part of main ergonomics interests, especially, in terms of driver's posture. Previous research on driver's posture has mainly focused on the initial optimal posture for driving sedans. However, customer preferences on cars are shifting from sedans to RV and automobile manufacturing companies seek to understand temporal changes in drivers' posture according to driving environment. So the main aim of this study was to develop a driver's posture measurement system during driving and investigate casual changes due to duration, car type, traffic flow. Four male drivers participated in the experiments during one week. It was shown that considerable changes in their postures were caused with respect to driving environment, which implies that not only static optimal postures but their dynamic changes should be taken into consideration for proper design and evaluation of interior packaging. The research is expected to help packaging designers understand human drivers so as to improve their comfort.

Estimating of Optimal Allowed Distance for Reducing Vibration and Noise Problems by Pile Driving after Drilling Method in Deep Foundation Work (천공 후 말뚝타격공법의 진동 $\cdot$ 소음 문제 해소를 위한 적정 이격거리 산정 방안 연구)

  • Park Hong-Tae;Kang Lee-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.152-163
    • /
    • 2005
  • Pile driving work causes a vibration problem in the construction site using pile foundation and often causes civil affairs by construction noise around the construction site. For the vibration and noise problems, the driving after drilling method rather than the direct driving method is being generalized for reducing vibration and noise. However, this method also causes civil affairs when the driving work is operated in adjacent area. This study suggests a criterion for evaluating an optimal allowed distance for pile driving work by the driving after drilling method. Actual surveys of vibration and noise for pile driving work in seven construction sites were used for developing regression analysis equations. The results can be a standard to estimate the allowed distance to avoid vibration and noise problems in pile driving work for deep foundation.

Pontryagin's Minimum Principle Applied to a Double Capacitive Thermal System (최소원리의 적용에 의한 이중열용량계의 최적계속온도제어방식에 관한 연구)

  • Se Hoon Chang
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.31-40
    • /
    • 1972
  • This study intends to investigate the optimal switching modes of a double-capacitive thermal system under different constraints on the state and the control variable, by the application of the Pontryagin's Minimum Principle. Throughout the development, the control effort is assumed to have two modes of state: M or zero and the terminal times being fixed. In the first part of this study, the Principle is discussed under various conditions for this particular problem, with different criterion functions and in the same time imposing a certain constraints; i) on the terminal states, ii) on functions of the terminal states. Depending upon the upper bound value of the control vector, possible driving modes of the states are studied from which particular optimal driving modes are extracted so as to meet the specified constraints and boundary conditions imposed in the problem. Numerical solutions are evaluated for an over0damped, double-capacitive thermal plant and the optimal solutions: the switching mode, the optimal switching time, and the control effort are compared with the analytical results, in the second part of this work, to confirm the development.

  • PDF

Optimal Fuzzy Control of Parallel Hybrid Electric Vehicles

  • Farrokhi, M.;Mohebbi, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.910-914
    • /
    • 2005
  • In this paper an optimal method based on fuzzy logic for controlling parallel hybrid electric vehicles is presented. In parallel hybrid electric vehicles the required torque for deriving and operating the on-board accessories is generated by a combination of internal-combustion engine and an electric motor. The powersharing between the internal combustion engine and the electric motor is the key point for efficient driving. This is a highly nonlinear and time varying plant and its control strategy will be implemented with the use of fuzzy logic controller. The fuzzy logic controller will be designed based on the state of charge of batteries and the desired torque for driving. The output of controller controls the throttle of the combustion engine. The main contribution of this paper is the development of an optimal control based on fuzzy logic, which maximizes the output torque of the vehicle while minimizing fuel consumed by the combustion engine.

  • PDF

Implementation of Optimal Train control algorithm using Simulated Anealir (시뮬레이티드 어닐링(SA)을 이용한 열차최적제어 알고리즘의 구현)

  • Han, Seong-Ho;Baek, Jong-Hyen;Lee, Su-Gil;Byen, Yun-Sub;An, Tae-Ki;Ohn, Jeung-Geun;Park, Hyun-Jun;Jeon, Young-Jae;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.486-488
    • /
    • 1999
  • This paper shows the form of the optimal solution and how to minimize energy of train driving control using SA(simulated annealing). In this paper, we consider the case where a train is to be driven by automatic operation mode along a non-constant gradient, curve and with speed limits. Using the combinational optimal technique, SA, we constructed optimal train driving strategy.

  • PDF

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.