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Uniqueness of an Optimal Run-up for a Steep Incline of a Train

Xuan Vu'

Abstract

An optimal driving strategy of a train in a long journey on a nonsteep track has four phases: an initial power phase, a
long hold speed phase, a coast phase and a final brake phase. The majority of the journey is speed holding.

On a track with steep gradients, it becomes necessary to vary the strategy around steep sections of track because it is not
possible to hold a constant steep on steep track. Instead we must interrupt the speed hold phase with a power phase. The
aim of this paper is to show that there is a unique power phase that satisfies the necessary conditions for an optimal jour-
ney. The problem is developed and solved for various cases, from a simple single steep gradient to a complicated mul-
tiple steep gradient section. For each case, we construct a set of new conditions for optimality of the power phase that
minimises the energy used during the power phase subject to a weighted time penalty. We then use the new necessary
conditions to develop a calculate scheme for finding an optimal power phase for a steep incline. We also present an
example to confirm the uniqueness of an optimal power phase.

Keywords : Energy effcient, Optimal driving strategies

1. Introduction

The optimal journey for a long journey on a non-steep
track has four phases: an initial power phase, a long speed
holding phase, a coast phase and a final brake phase. The
majority of the journey is speed holding.

When a train comes to a steep gradient section, it becomes
necessary to vary the strategy around steep sections of track
because it is not possible to hold a constant speed on steep
track. Instead, we must interrupt the speed hold phase with
a power phase that starts somewhere before the steep sec-
tion and finishes somewhere beyond the steep section. The
aim of this paper is to show that there is a unique power
phase that satisfies the necessary conditions for an optimal
journey. We consider the optimal control when the speed
holding phase is interrupted by a single steep uphill sec-
tion. For simplicity we assume the track gradient is piece-
wise constant, and comprises a non-steep gradient, a steep
uphill gradient, and another non-steep gradient.

In this paper we first formulate the problem of finding
the optimal power phase, and present a new condition for
optimality of the power phase that minimises the energy

Y TTG Transportation Technology, Sydney 2000, Australia
E-mail: xuan.vu@ttgtt.com.au (Xuvan Vu)

~70 -

used during the power phase subject to a weighted time
penalty. We then derive key necessary conditions for an
optimal power phase, and prove that the optimal hold-
power-hold phase exists and is unique. Finally we support
the proof with some examples.

2. Background

The problem we discuss and solve in this paper is
mainly based on the results of a long term research of the
Scheduling and Control Group at the University of South
Australia. Their research results were used to build an in-
cab advice system for long haul trains. They named it
Freightmiser. Freightmiser helps to improve timekeeping
to scheduled target times and reduce fuel consumption,
while satisfying all requirements on speed limits, safe-
working systems and train-handling considerations. It has
been marketed by TTG Transportation Technology, a con-
sulting company on train technologies. It has currently
been used on freight trains operated by Pacific National
Freight Company, Australia and has been on trial with var-
ious rail companies in Australia, India and UK. The
research of the group was described by Howlett ef al in
[4,5,7,11] and in numerous papers by Howlett but most of
theoretical works were presented in [3,7].
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Before discussing the problem, for convenience we firstly
review the previous work of the Scheduling and Control Group.

3. Previous Work

3.1 The equation of motion
The equations of motion for a point mass train are

V=g () +e(x) ©
and

dt _1

A= @

where x is the position of the train, v(x) is the speed of
the train and #(x) is the time at which the train is at location
x. In this model 0< p< P for some fixed P, is the tractive
force per unit mass applied at the wheels, 0< g< Q for some
fixed O, is the braking force per unit mass, 7(v) is the resis-
tance force per unit mass and g(x) is the gradient force per
unit mass. The resistance force is defined by the formula

r(v) = a+bvtey’
The total time taken for the train to travel from x=0 to
x=X1is

T=t(X)—t(0)=f0Y dx

1
v(x)

Howlett and Pudney [5] show that the motion of a train
with distributed mass on a given gradient profile is the
same as the motion of a point mass train on a modified
gradient profile. The motion of a train with length § and
mass M can be modelled as

V=g r()+ L f p()glx-s)ds ©)

where x is the position of the front of the train and p(s)
is the mass per unit length at distance s from the front of
the train. This equation can be rewritten in the same form
as (1) if the modified gradient acceleration is defined as

2(0) =L _
80) = o[ p()g(-s)ds
In the next sections we will consider only point mass trains.

3.2 The Cost Function
The mechanical work done by the locomotive as the
train travels from x=0 to x =X is

J@= %’dg

in which case

d] _P

dx v

We ignore the (negative) work done by the brakes since
this energy is not recovered. We wish to minimise the cost
function J subject to the state equations (1) and (2). The
boundary conditions for the problem are

W0)=v(X)=0 and #0)=0, #(X)=T

3.3 Hamiltonian equation

We use Pontryagin’s Maximum Principle to find optimal
control strategy. The Maximum Principle requires us to max-
imise the Hamiltonian for the system, which is defined as

1= gig)-r )b @

where o and £ are adjoint variables. The adjoint vari-
ables evolve according to the equations

@p-gv+gv-rwrp)+ L )
v

and

dp _ oH _

dx Ot ©

We want to maximise H subject to
0<p<P and 0L¢g<Q

where P is the maximum available driving power, and Q
is the maximum available braking force. Thus we define

=12 1)p- %+ % g
H=Y(2-1)p-24+ (gm)-r)

+Ap+ u(P-p)+pg+o(Q-9) @]

where |, A, p o are non-negative Lagrange multipliers.
In order to maximize H we apply the Karush-Kuhn-Tucker
conditions

oH _lfa N,. -

ap—v(v 1)+4-p=0 ®)
and

6H__g o

v p—o=0 &)

with the complementary slackness conditions
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Ap=w(P-p)=pg=c(Q-q)=0. (10

There are two critical values of o:a=v and a.=0. So we
must consider the Hamiltonian in five cases: o.>v, a=v, 0<
a<v, a=0 and a.< 0. Using a new adjoint variable 0=a/v we
obtain the optimal controls summarised in the table below:

adjoint mode control
6>1 power p=P,q=0
g=1 hold p=r(v)—g(x), g=0
0<o<1 coast p=0,4=0
6<0 brake p=0,9=0

These necessary conditions for an optimal journey are
discussed more carefully in [7,9]. They have been applied
in the Freightmiser technology.

4. Problem Formulation

The equation of motion for a train in full power is

dv_P

v—=——r(v)+g(x 11

&= r)+e) (1)
where P is the maximum power per unit mass, #{v)is the

resistance force per unit mass and g(x)is the gradient force

per unit mass. The adjoint equation of the system, as

defined in previous section, is

@_Mez(_l)m (12)
dx v v

where

Y =) (13)

and v = v(x) is the solution to (11). From Section 1, we
know that for an optimal journey a change from hold to
power and a change from power to hold each requires 6=
1. For convenience, we define n=6-1, so that power
starts and finishes at 7=0. From (12), the modified adjoint
equation is

d_fz_W(V)+P’7:W(V)—\|!(V) (14)

3 3
dx v v

Suppose the optimal holding speed for the entire jour-
ney is ¥ . Howlett {7] and Howlett and Leizarowitz [8]
show that when the hold phase for an optimal journey is
interrupted by a steep uphill section, the optimal control
requires a power phase that starts before the start of the
steep section and finishes beyond the steep section. Dur-
ing this power phase, the speed of the train increases from
the hold speed V before the start of the steep section,
decreases to below speed V on the steep section, and

-T2

>

¢ q

Fig. 1 Optimal Speed profile for a Single Steep Gradient.

returns to speed V after the steep section. Intuitively, we
want to keep the “average” speed of the train during the
power phase the same as the holding speed for the overall
journey. Fig. 1 indicates the problem: we want to find an
optimal point p at which to start the power phase so that
speed increases before the start of the steep section at b,
decreases through speed ¥ on the steep uphill interval [b,
c], and increases back to speed V at some point ¢ beyond
the steep section.

5. Necessary Conditions

As mentioned in previous section, for an optimal jour-
ney we need

0=1cn=0 and 2= 091
dx dx

=0
at x =p and x =q. Let vy(x) be the optimal speed profile. Inte-
grating the modified adjoint equation (14) over [p, ¢] gives

f v -v(¥)
P vg
where the integrating factor I,(x)is defined for xe[p, q]

by the formula

L(x)dx =0 (15)

+P
L(x) = Cexp[—r Yvo) d&) (16)
3
Py
Equation (15) for p<b<c<g was used by Howlett [7]
as a standard necessary condition to specify the optimal
power phase on a steep uphill section. We will use a varia-
tional argument to find an alternative necessary condition.

6. An Alternative Necessary Condition
If the speed changes from the optimal profile vo(x) by an

innitesimal increment to a new profile (vp+8v) (x) then the
equation for the new profile is
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a’(v0 dv)__P
dx vyt ov

(vg+5 —r(vy+3v)+g(x) (17)
By applying a Maclaurin series expansion, subtracting

the original equation (14) for vy and neglecting second and

higher order terms we obtain the perturbation equation

dvo+ doy

ov ——( 1)|: +r(vo)}6v (18)

We call dv a first order variation of the speed. The equa-
tion for the first order variation is derived rigorously on
page 163 of the book by Birkhoff and Rota [1]. If we
rewrite (18) in the form

P+

L (u3) = (- 1){ “’“‘”}( ) (19)
Yo

and integrate using the initial condition vy(p)= ¥ we obtain

(vodv)(x) = VBv(p)1,(x)

where I, (x) is given by (16). By substitution into (15)
we have

Jq\v(V<>)—2\|f(V) Syed =0

P VO

or

f [“@W(%)} Sv-dx =0 20)
Yo

where Sv=0w(x) is the first order variation. This is an
alternative necessary condition for the optimal power
phase on a steep uphill section. The expression (20) takes
the form of a first order variation for an integral cost func-
tion. Suppose we define

Jv) = E[ﬂvﬂ +r(v)}dx @1)

We have the following result.
Theorem 1 Let v(x) be a solution to (11) and define

Jv) = Jp(v)—-(g-p)o'(V) (22)

where p<b<c<gq are chosen so that v(p)=v(iq)=V 4
necessary condition for a minimum of J is

Jz[ﬂ’ipw(v)].av.dx:o
v

where 6v is the first order variation of v.
The proofs of the theorems can be found in [13,14].

7. Key Equations

Suppose a train is powering on a steep uphill section [b, c].
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The gradient function is defined as
Y,ifxe(p,b)
gx) =1 Y,ifx e [b,c] | (23)
Y, ifxe(c,q]

The gradient accelerations Yo and y, could be either posi-
tive or negative but we assume they are not steep. We
assume ¥, is steep at hold speed V.

Theorem 2 The necessary conditions for minimising the
cost function (22) for a train travelling on the section
defined in (23) are

[P-0(vp)t Yovylu=

and

[P=0()+ Tyv 1= [0(r) -0 (M, ()Xo~ 1)
where n(v) >0 defined by

p=i-(e'(N-Y,)

Proof:
The equation of the motion of the train is

[0(vp)= @' (Vv T w(N](Yo=T1)

dv
d

with W(p)=v(g)=V. We choose the starting point p with
p<band v(p)=V¥ and then find g <c such that v(g)=V. By
separating the variables in (24) and integrating we obtain

Lo (24)

b Vidv
R =

where v, is the speed of the train at the bottom of the
steep section, and

_ Vv
= o 29

where v, is the speed of the train at the crest of the steep
section. If we integrate (24) from b to ¢ then we have

vdv
c-b= Ji COSAE 27)

Integrating both sides of (24) from p to b gives

121V2

L f’ P f’r(v)dx+ Yy(b-p) (28)

Integrating from b to ¢ gives
12 1

SVem3Vs J‘ “dx— J‘r(v)dxﬂq(c—b) (29)

a.nd integrating from ¢ to g gives

- _J" o~ Jcr(v)a’x-k)”](c—b) (30)
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By combining (28)~(30) and rearranging, we get
frvas= [ Lavt b-p)+ i)+ Bg-0) G
P P

From the proof of Theorem (1), the cost function (22) is
defined by

Jo= [ 40 () e
74 v
If we consider a small variation w(x) to the optimal
speed profile and let v=v,+&v, then from (21) we obtain
e

+3
ogrin= 1 20

(o[ -t [ax (32)

By substituting (31) into (32) we obtain

= () +PI LY 6-p)+ Fie-b)

+13(g-c)-0'(V)(g-p) . (33)

From (24) we can write

el

—vdv

V[r(V) Yx] =P 9

ifxe[b,c]

P- v[r(v) A fre(cdl

From (34) we define
dx
A = [Fd
(v, v,) JZV v

vdv
vlr(v)+ 11-P

_ J-vb vdy e
¥ PV[r(n)+ 1]

¥ Jf',cP—v[r(v)Jr ] 33)

Hence using (25) and (26) we obtain
Jvpvo) = [w(V)+Pl4(v,v,)

2
5 vidv

) S -1

RV roms

() c-b+

+1i(c-b)

y dv
COBA

2
vdy

VP v[r(v)— )”0])

2

' v'dy 36

Wi =roes 0
We need to minimise J (v3, v;)subject to

2
5 vidv

V() + TP
We define the Lagrangian function

2
vdv

T (W ve) = J(vy, c)+}“[:c b- rm

} 37

where X is the Lagrange multiplier. Applying the Karush-

Kuhn-Tucker conditions we have
0T _0 ana 2L =9
aVb Ve
and the complementary slackness conditions
2
dv
Me—b— (" V—} =9
[c Lo ]-P
If we weaken the equality constraint (27) to
2dv
b< Y 38
R e G9
then we can also guarantee that A is non-negative and
our solution is unchanged because the control that mini-
mises energy will not travel further than the required dis-
tance c—b.
So we have
oJ _
e, = WD)+ P T+ AP+ Yy
—1o'(N-Ll(P—o(v)+ 11v;) (39)
and hence 0J/0v;, = 0 gives
(P=0(vp)*+ Yovp)h = (w(V)+P)(1;- 1))
~(0'(N-To)(9(vy) - 1v,—P) (40)
Similarly with 0J/0v.=0 we have
P-0()+ Ly )h=(w(N+P)(1H- 1)
—0'(N)-1)(o(v,)- 1v.—P). (41)
Let
p=r=(9(N-T,). “2)
Then we can rewrite (40) and (41) as
[P-0(vy)+ Yovelu =[o(v)-Lv(v)I(Xp- 1) (43)
and
[P-o(v)t v lu=[o(v)-Lv(v)I(1;-1})  (44)
~74 - IJR International Journal of Railway
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where Li{(v)=0(V)+0¢'(V)(v—V). The line y=Ly(v) is
the tangent to the convex curve y=@(v). Equations (27), (43)
and (44) are necessary conditions for an optimal solution.

We now wish to show that p>0. Since 1 and 1, are
non-steep gradient accelerations, we have

P-g(v)+ Yy»,>0 (43)
and
P-o(v)t 1y, >0 (46)

Since @(v) is convex and and Ly(v) is the tangent to ¢(v)
at v="Vit follows that

0(V)~Lv)20

Since ;- X for j=0, 2, we can use (43), (45) and (46)

to conclude that 4 is positive.

8. Existence And Uniqueness

8.1 Geometric approach

We can write (43) and (44) as

@(vy) =Ly, 7 (v) (47)
and

e =L, p(v.) (48)
where

(¢'(N)- 1~ Yl)}v
b

. p_*PUT-T))
wtI- 1
for i=0, 2. The right hand sides of (47) and (48) are lin-

ear functions. The straight line y =L, . (v) passes through
the fixed point

_(Pry(V) p, [PHV(N] )
Py= ,P+—
’ (w’(V)—Yo 0'(N-T1, )
and the straight line y = L,, ;. (v) passes through the fixed
point
+
p,= (}T+\V(V) ,P+[P ' y(N] Yz)
o'(N-1, ¢'(V)-1,
Since ¢ (v)is convex, equations (47) and (48) each have

at most two solutions for v.
If we let p=0, the lines become

y=0'(Ny=y(¥) =o' (N-V+o(V)=LAv)

The line y=Ly{v) is the tangent to the curve y=(v) at the
point v=V. Thus (47) and (48) imply that v;=v.=V and
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y y=0() y=L,(v)

Z)b——> 0

—0 v

Fig. 2 lllustration of the Geometric Proof.

the fixed points are on the common tangent.

Fig. 2 shows the tangent y=Ly (v) in purple, the line
L,y in red and the line L, L in green,

When p>0 the lines L, r (v) for each j=0, 2 cut the
curve y=@(v) at two points v, , and v, . with v p <V
<vr for each i=0, 2. Since v, < V<v, there is only one
possibie solution to each equation.

Consider the slope of the lines (47) and (48)

(Y- + Yu
r-Titu

s{p) = , for i=0, 2.

Since 2;-1;>0 and X;<0 for then we can easily see
that s; is a monotone decreasing function. So if u increases
the slopes of the two lines y=L, y(v) and y=Ly y(v)
decrease. It follows that the solution v, to the equation
©(V)=Ly, o (vs) increases and the solution v, to the equa-
tion @(v.)=Ly, 12 (vc) decreases as shown mn Fig. 2. How-
ever from the constraint (27) we can see if v, increases
then v, also increases. Therefore there is precisely one
value of u for which the necessary conditions (43), (44)
and (27) are satised. Thus the solution to equations (43),
(44) and (27) is unique.

8.2 Algebraic approach

8.2.1 Existence of the solution

For an optimal strategy we must satisfy the conditions
(27), (43) and (44). It is not easy to solve this system
explicitly so we use a numerical iteration. Given a value of
v, we can use (27) to calculate v.. Now we can calculate
=M, from (44)

[(p(vc) ~-L V(vc)](’YZ'"’Yl)
P—(P(VC) +72vc

If vy, v, and p are optimal they must satisfy (43). That is,
we require f{vp)=0 where

Sy = [P=0(vp) +yvp ) M(v,)

M(v,) = (49)

—75 -



Xuan Vu

. . B
Fig. 3 Speed profile when v(b) = v,

o) —Ly(vp)I(vo~71) (50

Theorem 3 A solution to the equation

Ave)=0

where f is defined by (50) and vy is the speed at x=b,
exists in its domain (V, v b).

Proof:

Since v, < ¥ <vy, the possible upper bound v for vj can
be determined by setting v.=V and using (27) to calculate
the corresponding v;. Thus v,=v, is the solution to the
equation

_ b Vidv
v v(r(v)~y;)-P

The minimum possible value for v; is ¥ and the domain
of fivy) is (¥ v ). The speed profile when v,=V is illus-
trated in Fig. 3.

We can prove the existence by observing that fis a con-
tinuous function of v, and showing that either {7) <0 and
fve)>0 or A¥)>0 and f{v;). First we need to check the
sign of the two ends of the range of vj. At v,=V we have

) —Li{vy) = p(v)-[o(N)+0'(N)(v,= ] =0 (51)

when v, =V, That is,
fV) = [P= (V) +y,VIM(ve) .
Since y, is non-steep at speed ¥ then
P—o(V)+y,V>0
We now check the sign of M(v,). We have, as in (49),
[9(v)—Ly(v)I(1,—11)

P-o(v)*+1,v,

Recall that y, 1s also non-steep gradient acceleration at
speed v<V . Since v, <V,

M(v,) =

~76 -

P_(P(vc) +Y2vc >0

That means M(v.) > 0 for all v<¥ and so f¥)>0.

When v.=V, v,=v and (44) gives M(v,)=0. Then

) =~0()~Ly(vi)1(1,~10) <0 (52)

Note that the maximum speed at b, v, might be greater
than the limiting speed at b, vi(P, v, ). If that is the case
then we need to set v ;=v,(P, v, ). Since

PP, y0)) 1 vL(P,Y0)—P =0

then
fvi(Pyve)) = 1o (Pyo) —LiAv(P,yo))]
(11—70)<0.

Therefore there exists at least one solution to Avs)=0 in
the interval v, € (¥, vp)

8.2.2 Uniqueness of the solution
If we can prove f is monotonic decreasing then we can
prove the solution of fv;)=0 is unique. Consider
aflvy) dM(v,) dv
[P + “. <
av, [P~y +70v3] dv, dv,

4

~(F)=10)M) = (Yo=1 NP (v) - #(V)) (53)
By differentiating (49) we have
dM(v

dl() o =11

4

PEIPH V-V, ]- 9 (NP-0(v,)]
[P-p(v,)+yv,]

(54)

Let
(V) = (') =1 ) U+ PO (M) +y () +P)  (55)

So now we can write (54) as
aMm _ (V) (Y,—71)

Do [P-g()+rv.]’
Since

$'(v) =vo"(v)

and

(56)

P>v[r(v)-v,] = o(v)-vy,

and

v (v) = (v)+o(v)

then we have

(V) = @" MYV +P) = (¢ (V)-1)P'(v)
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@' MW P)+P)=(¢ (V) -1)v" (V)
> " W' M)+ e(v)-1,y—(¢' (V) -1V
="M N+ e(v)-ve' (V)]
=" MR+ (V)¢ (V)(v=-V)-ve' (V)]
=" WY N+ e(N-V(@) V)]
=0. (57

Since n'(v)>0 and, from (55), n(V)=0 we can con-
clude that m(v)>0 for v>V and n(v)<0 for v<V. Since
v,<V then n(v,)<0. Hence using (56) we obtain

dM(v,) <0
dv,
By differentiating (27) with respect to v, we have
2 2
Ve % W
¢(VC)_’YIVC_P ¢(Vb)“ylvb—P CIVC
and hence

d 2 ~y,v,~P
_v_c_:(v_b) 00 ve-P

dvy v/ 9(vy)=1v,—P
So the first term of (53) is

dM(v,) dv,
[P—p(vp) +1ovs] T 'dTb<0

[4

Now consider
[(v.) =L v)l(v,—11)
P_¢(vc)+YZvc

Since @(v) (v) is convex then ¢@(v,)—Ly(v,)>0. Hence
M(v.)>0, and therefore the second term of (53) is nega-
tive. Since v,>V and ¢(v) is convex then

P(vp)> (V)

and so the last term of (53) is also negative. So from
(53) we have

dflvy) <0
dvb

Therefore, there is only one solution to the equation

fvy)=0.

M(v,)=

9. Numerical Solution

We want to solve equations (27), (43) and (44) for v,
v, and u. For convenience we write them here again.
They are

[P-o(vy) tygvel = [0(ve) =L vp)I(Yo—11),
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[P=o(vo) +rav = [o(v) -LAvp)l(Y2~71)

and

vdv
c—b= [ ——
T
respectively. From (43) we define the function f{v,) by
the formula

flve) = [P‘(”(Vb)—"}’ovb]ﬂ
~[@(vy) =L Lvp)1(¥1=70) (58)

From the previous section, we know that f{¥)>0 and
f(;b) <0, and that /is monotonic decreasing. We can use a
numerical method such as the Bisection method [2] to find
the solution to f{v,) =0. For each candidate value of v,,
we must calculate v, and before we can evaluate /. The
value for v, can be found using a numerical DE solver to
solve the equation of motion (27) forwards from
(x=b,v=v,) to x=c. The value for p is calculated
using formula (49) which is derived from (44).

Evaluating f{v) requires many calculations. We could speed
up the method by using the regula falsi method or Brent’s
method [2] to reduce the number of evaluations of frequired.

10. Example

The gradient acceleration vy, is the gradient on which
the train will approach a limiting speed ¥ under power.
That is,

P
I‘/—V(V)+YV=0

Therefore, we have

_on-r

Tv v

In our examples we use holding speed V=20 and P=3.
The gradient acceleration that gives speed V as a limiting
speed is y, =-0.1233 . If y<y, then the track is steep
uphill.

Example 1 4 single constant gradient steep section.

In this example we simulate a train powering over a con-
stant gradient uphill section. This section starts at x= 5000
and ends at x=6000. The gradient of the track is

0.075 if x<5000
g6 =1 _02  ifx € [5000,6000] (59)
0.09 ifx>6000

First, we plotted flv,) for various v, €[20,24]. The
left side of Fig. 4 shows the result. We then used the

—77 =



Xuan Vu

24r 24r
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Fig. 4 Result of Example 1

Table 1 Experimental results of hold-power-hold on a single

steep uphill.

p Yy J fvy)
3904.15 22.000000 1.5435219085 -0.00080804
4527.70 21.000000 1.6125591341 0.00120800
4238.99 21.500000 1.4985675595 0.00026211
4078.01 21.750000 1.4983069060 -0.00025739
4160.02 21.625000 1.4931503194 0.00000624
4119.40 21.687500 1.4943599371 -0.00012460
4139.81 21.656250 1.4934189882 -0.00005893
4149.94 21.640625 1.4932013580 -0.00002628
4154.98 21.632812 1.4931551063 -0.00001000
4157.50 21.628906 1.4931475411 -0.00000187
4158.76 21.626953 1.4931476388 0.00000218
4158.13 21.627929 14931472669 -0.00000015
4157.82 21.628417 1.4931473232 -0.00000086
4157.97 21.628173 14931472749 -0.00000035
4158.05 21.628051 1.4931472658 0.00000010

Bisection Method to find the solution to f{v,)=0. The
optimal speed profile is shown on the right of Fig. 4.

The sequence of estimates for the optimal vb are shown
in the table 1. Recall that J is the objective function for our
problem, from (22).

11. Conclusion

For a track with a single steep uphill section, we have
used an algebraic argument and a geometry argument to
show that there is a unique optimal location before the
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start of the steep gradient at which the power phase should
begin. We have developed a new set of necessary condi-
tions for an optimal power phase for a steep uphill section
by minimising a cost function which is a compromise of
energy used and time taken. We have also developed a
new method for calculating the optimal power phase for
the steep uphill section. This method converges quickly to
the unique sotution.

For a track with two or more gradient uphill sections we
are able to prove the existence using the similar appro-
aches but not uniqueness of a solution. However, we are
able to develop a numerical scheme for calculating power
phases that satisfy the necessary conditions for an optimal
strategy and demonstrate uniqueness in numerical exam-
ples. The details of the proof and examples can be found
in [13,14].
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