• Title/Summary/Keyword: Optimal distance

Search Result 1,305, Processing Time 0.024 seconds

A Study on the Optimal Distance and Heating Energy with relation to Site Planning of Apartment Building (아파트 배치형태에 따른 적정 인동거리와 난방에너지에 대한 연구)

  • Jung, Doo-Woon;Choi, Chang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.97-107
    • /
    • 2003
  • Recently, the apartment building has been constructed in large quantities to provide housings due to the gravitation of population towards large cities. However, we're faced with a critical problem of deterioration of our dwelling environment caused by the trend toward high-rise apartment which could be an obstruction in obtaining sufficient sunlight. Therefore, there have been several legislative actions against infringement on the right of sunshine. In the building law, sunshine hours and the minimal separated distance between apartments are regulated as the criteria for the site planning, However, the minimal separated distance was defined without consideration of the parameters like building orientation and thermal effect of the sunshine hours in the site planning for the apartment building. In this study, the sunshine hours and heating energy during the underheated season for various arrangements in site planning are carefully considered and analyzed.

Vehicle Detection Using Optimal Features for Adaboost (Adaboost 최적 특징점을 이용한 차량 검출)

  • Kim, Gyu-Yeong;Lee, Geun-Hoo;Kim, Jae-Ho;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1129-1135
    • /
    • 2013
  • A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

Optimal Block Transportation Scheduling Considering the Minimization of the Travel Distance without Overload of a Transporter (트랜스포터의 공주행(空走行) 최소화를 고려한 블록 운반 계획 최적화)

  • Yim, Sun-Bin;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.646-655
    • /
    • 2008
  • A main issue about production management of shipyards is to efficiently manage the work in process and logistics. However, so far the management of a transporter for moving building blocks has not been efficiently performed. To solve the issues, optimal block transporting scheduling system is developed for minimizing of the travel distance without overload of a transporter. To implement the developed system, a hybrid optimization algorithm for an optimal block transportation scheduling is proposed by combining the genetic algorithm and the ant algorithm. Finally, to evaluate the applicability of the developed system, it is applied to a block transportation scheduling problem of shipyards. The result shows that the developed system can generate the optimal block transportation scheduling of a transporter which minimizes the travel distance without overload of the transporter.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Design of the Current Segment Coil for Accelerating the Magnetic Materials (자성물질을 가속시키기 위한 전류 Segment 코일의 설계)

  • Chung, Byung-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.861-866
    • /
    • 2012
  • The distance optimizing between coil and magnetic materials never be specified in the magnetic materials acceleration using the coil till now. We can know to be the distance which optimizes when being in the half position about the distance of intercoil by the result of the max point on the Differential calculus. Whether several top and bottom current segment coil structures were made and the steel ball in which the current segment coil structure is the magnetic materials could be accelerated in the optimizing distance or not confirmed. When the coil valley current about the mass of the steel ball was known as the experiment and it was but to be the nose consequently it applied to the magnetic materials and magnetic fluid, the optimal distance was solved between the coil and material.

The Performance Analysis of Nearest Neighbor Query Process using Circular Search Distance (순환검색거리를 이용하는 최대근접 질의처리의 성능분석)

  • Seon, Hwi-Joon;Kim, Won-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 2010
  • The number of searched nodes and the computation time in an index should be minimized for optimizing the processing cost of the nearest neighbor query. The Measurement of search distance considered a circular location property of objects is required to accurately select the nodes which will be searched in the nearest neighbor query. In this paper, we propose the processing method of the nearest neighbor query be considered a circular location property of object where the search space consists of a circular domain and show its performance by experiments. The proposed method uses the circular minimum distance and the circular optimal distance which are the search measurements for optimizing the processing cost of the nearest neighbor query.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

Optimally Weighted Cepstral Distance Measure for Speech Recognition (음성 인식을 위한 최적 가중 켑스트랄 거리 측정 방법)

  • 김원구
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.133-137
    • /
    • 1994
  • In this paper, a method for designing an optimal weight function for the weighted cepstral distance measure is proposed. A conventional weight function or cepstral lifter is obtained eperimentally depending on the spectral components to be emphasized. The proposed method minimizes the error between word reference patterns and the traning data. To compare the proposed optimal weight function with conventional function, speech recognition systems based on Dpynamic Time Warping and Hidden Markov Models were constructed to conduct speaker independent isolated word necogination eperiment. Results show that the proposed method gives better performance than conventional weight functions.

  • PDF

A Branch-and-Bound Algorithm for the Optimal Vehicle Routing (최적차량운행을 위한 분지한계기법)

  • Song Seong-Heon;Park Sun-Dal
    • Journal of the military operations research society of Korea
    • /
    • v.9 no.1
    • /
    • pp.75-85
    • /
    • 1983
  • This study is concerned with the problem of routing vehicles stationed at a central depot to supply customers with known demands, in such a way as to minimize the total distance travelled. The problem is referred to as the vehicle routing problem and is a generalization of the multiple traveling salesmen problem that has many practical applications. A branch-and-bound algorithm for the exact solution of the vehicle routing problem is presented. The algorithm finds the optimal number of vehicles as well as the minimum distance routes. A numerical example is given.

  • PDF

A Robust and Computationally Efficient Optimal Design Algorithm of Electromagnetic Devices Using Adaptive Response Surface Method

  • Zhang, Yanli;Yoon, Hee-Sung;Shin, Pan-Seok;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This paper presents a robust and computationally efficient optimal design algorithm for electromagnetic devices by combining an adaptive response surface approximation of the objective function and($1+{\lambda}$) evolution strategy. In the adaptive response surface approximation, the design space is successively reduced with the iteration, and Pareto-optimal sampling points are generated by using Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency are investigated.