• Title/Summary/Keyword: Optimal design algorithm

Search Result 1,924, Processing Time 0.028 seconds

A Design of Initial Cell Searcher for 3GPP LTE Downlink System (3GPP LTE 하향링크 시스템을 위한 초기 셀 탐색기 설계)

  • Shin, Kyung-Chan;Im, Se-Bin;Ok, Kwang-Man;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.733-742
    • /
    • 2008
  • In 3GPP LTE downlink system, initial cell search is essential for mobile station to connect to base station. In order to obtain information of the base station, the mobile station detects frame timing, frequency offset, and cell identification using primary synchronization channel(PSC) and secondary synchronization channel(SSC), which are defined in downlink OFDMA specification. In this paper, we analyze various detection algorithms in practical environment of inter-cell-interference, frequency offset, and multi-path fading channel and propose the optimal algorithm. Simulation results show that partial correlation method (for PSC acquisition) and interference cancellation method (for SSC detection) are the most superior algorithms among the applicable algorithms. Employ these two algorithms for receiver design, initial cell search is performed with 99% probability within 70ms in the channel environment considered.

Optimal Structure Design of Modular Neural Network (모듈라 신경망의 최적구조 설계)

  • Kim, Seong-Joo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.6-11
    • /
    • 2003
  • Recently, the modular network was proposed in a way to keep the size of the neural network small. The modular network solves the problem by splitting it into sub-problems. In this aspect, fuzzy systems act in a similar way. However, in a fuzzy system, there must be an expert rule which separates the input space. To overcome this, fuzzy-neural network has been used. However, the number of fuzzy rules grows exponentially as the number of input variables grow. In this paper, we would like to solve the size problem of neural networks using modular network with the hierarchic structure. In the hierarchic structure, the output of precedent module affects only the THEN part of the rule. Finally, the rules become shorter being compared to the rule of fuzzy-neural system. Also, the relations between input and output could be understood more easily in the Proposed modular network and that makes design easier.

항공기 탑재형 다목적 레이다 신호처리기 설계

  • Kim, Hyoun-Kyoung;Moon, Sang-Man;Kim, Tae-Sik;Lee, Hae-Chang;Kang, Kyoung-Woon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.229-237
    • /
    • 2004
  • In this paper, the design method and algorithms of the signal processor for a multipurpose radar system are analyzed. The signal processor, operating at the two modes-collision avoidance mode and weather mode, has 4 steps of ADC, NCI, STC, CFAR. Several algorithms of NCI and CFAR are analyzed and the optimal design is proposed to the system. CVI and CMLD algorithm have good performance in decreasing the false alarm rate and increasing detection probability, Regarding processor computational capacity, K=12 for CVI, M=16~20, Ko=M-4 for CMLD is suggested. CVI processing needs much time, two or more processors need to be allocated to CVI. So, for the system with four processors, two processors should be allocated to VID of NCI with ADC input and CFAR with STC, and two processors are should be allocated to CVI.

  • PDF

Simulator for Performance Analysis of Wireless Network based on Microsoft Windows Operating Systems (MS 윈도우즈 운영체제 기반의 무선 네트워크 성능 분석 시뮬레이터의 설계 및 구현)

  • Choi, Kwan-Deok;Jang, Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.155-162
    • /
    • 2010
  • To ensure accurate measurements of wireless network performance, it should be collected real-time data which are transmitted between a large number of nodes in the actual network environment. Therefore, it is necessary to develop simulation tool for finding optimal network system design method such as media access control, routing technique, ad-hoc algorithm of node deployment while overcoming spatial and temporal constraints. Our research attempts to provide an improved architecture and design method of simulation tool for wireless network is an application of multi-threading technique in these issues. We finally show that usability of the proposed simulator by comparing results derived from same test environment in the wireless LAN model of our simulator and widely used network simulation package, NS-2.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

LMS-based Edutech Teaching and Learning Platform Model Design Study (LMS 기반 에듀테크 교수학습 플랫폼 모형 설계 연구)

  • Yoon, Seung­-Bae;Yang, Seung Hyuk;Park, Hyunsoon
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.29-38
    • /
    • 2021
  • Purpose: This is a study to design an optimal Edutech teaching-learning platform model that can be linked with various types of LMS to activate e-learning. Methods: For this purpose, the contents of e-learning systems that can be used in the 4th industrial technology of cyber universities and general universities were cross-sectionally analyzed. Results: Cyber universities relied entirely on LMS, and general universities supplemented and utilized different Edutech methods for each professor such as Google Classroom, Zoom video communication, and YouTube in addition to LMS. It was considered that it would be meaningful to provide a minimal algorithm mapping to LMS to share metadata such as Google and YouTube for the Edutech teaching and learning platform model. Conclusion: Therefore, this study is expected to contribute to the improvement of teaching methods and academic achievement through the LMS-based Edutech teaching and learning platform model.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Development of Flash Boiling Spray Prediction Model of Multi-hole GDI Injector Using Machine Learning (머신러닝을 이용한 다공형 GDI 인젝터의 플래시 보일링 분무 예측 모델 개발)

  • Chang, Mengzhao;Shin, Dalho;Pham, Quangkhai;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • The purpose of this study is to use machine learning to build a model capable of predicting the flash boiling spray characteristics. In this study, the flash boiling spray was visualized using Shadowgraph visualization technology, and then the spray image was processed with MATLAB to obtain quantitative data of spray characteristics. The experimental conditions were used as input, and the spray characteristics were used as output to train the machine learning model. For the machine learning model, the XGB (extreme gradient boosting) algorithm was used. Finally, the performance of machine learning model was evaluated using R2 and RMSE (root mean square error). In order to have enough data to train the machine learning model, this study used 12 injectors with different design parameters, and set various fuel temperatures and ambient pressures, resulting in about 12,000 data. By comparing the performance of the model with different amounts of training data, it was found that the number of training data must reach at least 7,000 before the model can show optimal performance. The model showed different prediction performances for different spray characteristics. Compared with the upstream spray angle and the downstream spray angle, the model had the best prediction performance for the spray tip penetration. In addition, the prediction performance of the model showed a relatively poor trend in the initial stage of injection and the final stage of injection. The model performance is expired to be further enhanced by optimizing the hyper-parameters input into the model.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

A Study on Reliability Based Design Criteria for the Steel Highway Bridge (강도로교(鋼道路橋)의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(硏究))

  • Cho, Hyo Nam;Kim, Woo Seok;Lee, Cheung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 1985
  • This study proposes a reliability based design criteria for the steel bridge (H-beam, plate-girder and composite-beam), which is most common type of steel bridge, and also proposes the theoretical bases of nominal safety factors as well as load and rasistance factors based on the reliability theory. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM (Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the safety pravisions of the current steel bridge design code. Galambo's theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistences by LRFD Format and SGST Format, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. It may be concluded that the proposed LRFD reliability based design provisions for the steel highway bridge give more rational design than the current standard code for steel highway bridge.

  • PDF