• 제목/요약/키워드: Optimal design algorithm

검색결과 1,921건 처리시간 0.022초

Modified hybrid vision correction algorithm을 활용한 상수관망 최적설계 (Optimal design of water distribution system using modified hybrid vision correction algorithm)

  • 류용민;이의훈
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1271-1282
    • /
    • 2022
  • 상수관망 최적설계는 사용자가 설정한 목적에 따라 다양하게 사용된다. 상수관망 최적설계는 비용의 최소화 및 관의 제작 시 발생하는 에너지 최소화 등 목적이 다양하게 존재한다. 본 연구에서는 Modified Hybrid Vision Correction Algorithm (MHVCA)을 기반으로 다양한 상수관망에 대한 비용 최적설계를 진행하였다. 또한 새로운 평가지표인 Best Rate (BR)를 제안하였다. BR은 K-mean Clustering Algorithm을 기반으로 개발된 평가지표이다. BR을 통해 상수관망 최적설계에 사용된 각 알고리즘의 최적 설계안 탐색 가능성에 대한 비교를 하였다. 다양한 관망에 대한 MHVCA의 최적설계 결과를 Vision Correction Algorithm (VCA) 및 Hybrid Vision Correction Algorithm (HVCA)과 비교하였다. MHVCA는 VCA 및 HVCA보다 낮은 비용의 설계안을 탐색하였다. 또한 MHVCA는 낮은 비용의 설계안을 탐색할 확률이 VCA 및 HVCA보다 높았다. MHVCA는 본 연구에서 적용한 비용 최소화를 위한 상수관망 최적설계 뿐만이 아닌 다양한 목적을 위한 상수관망 최적설계에 적용할 경우 좋은 결과를 나타낼 수 있을 것이다.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

유전자 알고리듬을 이용한 공작기계 구조물의 정역학적 최적설계 (Optimal Design of Machine Tool Structure for Static Loading Using a Genetic Algorithm)

  • 박종권;성활경
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.66-73
    • /
    • 1997
  • In many optimal methods for the structural design, the structural analysis is performed with the given design parameters. Then the design sensitivity is calculated based on its structural anaysis results. There-after, the design parameters are changed iteratively. But genetic algorithm is a optimal searching technique which is not depend on design sensitivity. This method uses for many design para- meter groups which are generated by a designer. The generated design parameter groups are become initial population, and then the fitness of the all design parameters are calculated. According to the fitness of each parameter, the design parameters are optimized through the calculation of reproduction process, degradation and interchange, and mutation. Those are the basic operation of the genetic algorithm. The changing process of population is called a generation. The basic calculation process of genetic algorithm is repeatly accepted to every generation. Then the fitness value of the element of a generation becomes maximum. Therefore, the design parameters converge to the optimal. In this study, the optimal design pro- cess of a machine tool structure for static loading is presented to determine the optimal base supporting points and structure thickness using a genetic algorithm.

  • PDF

Upgraded salp swarm algorithm for optimal design of semi-active MR dampers in buildings

  • Farzad Raeesi;Hedayat Veladi;Bahman Farahmand Azar;Sina Shirgir;Baharak Jafarpurian
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.197-209
    • /
    • 2023
  • In the case of designing control devices in a building, reliance on experimental formulation or engineering concepts without using optimization algorithms leads to non-optimal solutions or design parameters, which makes the use of control devices costly and unreasonable. The optimization algorithms are capable of identifying the required number of parameters for a specific design problem, however, this process is difficult and inefficient in dealing with some specific optimal design processes. This paper aims to introduce an upgraded version of the salp swarm algorithm to handle some engineering design. The performance of the new upgraded algorithm is tested using some benchmark test functions as well as a six-story benchmark building equipped with semi-active MR dampers. The simulation results show that the proposed algorithm can be successfully applied to get an optimal design of the MR dampers in the building.

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.

유전자 알고리즘을 이용한 닐센아치교의 최적설계기법 (Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm)

  • 이광수;정영수
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.361-373
    • /
    • 2009
  • 유전자 알고리즘을 이용한 닐센아치교의 최적설계기법을 이 논문에서 제시하였다. 설계 매개변수로는 닐센아치교의 아치-라이즈비와 강중비에 대해서 최적화기법을 적용하여 각각의 거동을 분석하고, 적정성을 평가하여 최적의 매개변수 값을 결정하였다. 매개변수의 결정은 구조물의 안전성과 사용성 그리고 경제성에 중요한 설계인자로서 정형화가 요구된다. 이를 위해 최적화 기법으로 전역 최적해 탐색능력이 우수한 유전자 알고리즘을 사용하였으며, 설계 목적함수로는 구조물의 총 중량을 사용하였고, 제약조건으로는 변위, 응력, 시공성 제약조건을 두었다. 구조해석은 미소변위이론에 의한 탄성해석을 수행하여 유전자 알고리즘과 조합하여 병렬연산으로 수행시간을 단축시켰다. 이 연구에서 개발된 최적설계기법을 사용하여 최적의 아치-라이즈비와 강중비, 최적설계영역을 제시 하였으며 실무에 적용할 수 있도록 하였다.

향상된 유전알고리듬을 이용한 스퀴즈 필름 댐퍼의 최적설계 (Optimal Design of Squeeze Film Damper Using an Enhanced Genetic Algorithm)

  • 김영찬;안영공;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.805-809
    • /
    • 2001
  • This paper is presented to determine the optimal parameters of squeeze film damper using an enhanced genetic algorithm (EGA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is minimization of a transmitted load between bearing and foundation at the operating and critical speeds of a flexible rotor. The present algorithm was the synthesis of a genetic algorithm with simplex method for a local concentrate search. This hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution and can find both the global and local optimum solution. The numerical example is presented that illustrated the effectiveness of enhanced genetic algorithm for the optimal design of the squeeze film damper for reducing transmitted load.

  • PDF

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

Memetic Algorithms을 적용한 영구자석 풍력발전기 최적설계 (Optimal Design of PM Wind Generator using Memetic Algorithm)

  • 박지성;안영준;김종욱;이철균;정상용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.6-8
    • /
    • 2009
  • This paper presents the novel implementation of memetic algorithm with GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search), which is applied for optimal design methodology of electric machine. This hybrid algorithm has been developed for obtaining the global optimum rapidly, which is effective for optimal design of electric machine with many local optima and much longer computation time. In particular, the proposed memetic algorithm has been forwarded to optimal design of direct-driven PM wind generator for maximizing the Annual Energy Production (AEP), of which design objective should be obtained by FEA (Finite Element Analysis). After all, it is shown that GA combined with MADS has contributed to reducing the computation time effectively for optimal design of PM wind generator when compared with purposely developed GA implemented with the parallel computing method.

  • PDF