DOI QR코드

DOI QR Code

Optimal design of water distribution system using modified hybrid vision correction algorithm

Modified hybrid vision correction algorithm을 활용한 상수관망 최적설계

  • Ryu, Yong Min (Department of Civil Engineering, Chungbuk National University) ;
  • Lee, Eui Hoon (School of Civil Engineering, Chungbuk National University)
  • 류용민 (충북대학교 토목공학과) ;
  • 이의훈 (충북대학교 토목공학부)
  • Received : 2022.08.26
  • Accepted : 2022.11.07
  • Published : 2022.12.31

Abstract

The optimal design of Water Distribution System (WDS) is used in various ways according to the purpose set by the user. The optimal design of WDS has various purposes, such as minimizing costs and minimizing energy generated when manufacturing pipes. In this study, based on the Modified Hybrid Vision Correction Algorithm (MHVCA), a cost-optimal design was conducted for various WDSs. We also propose a new evaluation index, Best Rate (BR). BR is an evaluation index developed based on the K-mean Clustering Algorithm. Through BR, a comparison was made on the possibility of searching for the optimal design of each algorithm used in the optimal design of WDS. The results of MHVCA for WDS were compared with Vision Correction Algorithm (VCA) and Hybrid Vision Correction Algorithm (HVCA). MHVCA showed a lower cost design than VCA and HVCA. In addition, MHVCA showed better probability of lower cost designs than VCA and HVCA. MHVCA will be able to show good results when applied to the optimal design of WDS for various purposes as well as the optimal design of WDS for cost minimization applied in this study.

상수관망 최적설계는 사용자가 설정한 목적에 따라 다양하게 사용된다. 상수관망 최적설계는 비용의 최소화 및 관의 제작 시 발생하는 에너지 최소화 등 목적이 다양하게 존재한다. 본 연구에서는 Modified Hybrid Vision Correction Algorithm (MHVCA)을 기반으로 다양한 상수관망에 대한 비용 최적설계를 진행하였다. 또한 새로운 평가지표인 Best Rate (BR)를 제안하였다. BR은 K-mean Clustering Algorithm을 기반으로 개발된 평가지표이다. BR을 통해 상수관망 최적설계에 사용된 각 알고리즘의 최적 설계안 탐색 가능성에 대한 비교를 하였다. 다양한 관망에 대한 MHVCA의 최적설계 결과를 Vision Correction Algorithm (VCA) 및 Hybrid Vision Correction Algorithm (HVCA)과 비교하였다. MHVCA는 VCA 및 HVCA보다 낮은 비용의 설계안을 탐색하였다. 또한 MHVCA는 낮은 비용의 설계안을 탐색할 확률이 VCA 및 HVCA보다 높았다. MHVCA는 본 연구에서 적용한 비용 최소화를 위한 상수관망 최적설계 뿐만이 아닌 다양한 목적을 위한 상수관망 최적설계에 적용할 경우 좋은 결과를 나타낼 수 있을 것이다.

Keywords

References

  1. Bragalli, C., D'Ambrosio, C., Lee, J., Lodi, A., and Toth, P. (2008). Water network design by MINLP. Report No. Rc24495(wos02-056); IBM Research, Yorktown Heights, NY, U.S.
  2. Chiplunkar, A.V. (1986). "Looped water distribution system optimization for single loading." Journal of Environmental Engineering, Vol. 112, No. 2, pp. 264-279. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:2(264)
  3. Choi, Y.H., Lee, H.M., Yoo, D.G., and Kim, J.H. (2015). "Optimal design of water supply system using multi-objective harmony search algorithm." Journal of Korean Society of Water and Wastewater, Vol. 29, No. 3, pp. 293-303. https://doi.org/10.11001/jksww.2015.29.3.293
  4. Cunha, M.D., and Sousa, J. (1999). "Water distribution network design optimization: Simulated annealing approach." Water Resources Planning and Management, Vol. 125, No. 4, pp. 215-221. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:4(215)
  5. El-Bahrawy, A., and Smith, A.A. (1985). "Application of MINOS to water collection and distribution networks." Civil Engineering Systems, Vol. 2, No. 1, pp. 38-49.
  6. El-Bahrawy, A.N., and Smith, A.A. (1987). "A methodology for optimal design of pipe distribution networks." Canadian Journal of Civil Engineering, Vol. 14, No. 2, pp. 207-215. https://doi.org/10.1139/l87-032
  7. Geem, Z.W. (2009). "Particle-swarm harmony search for water network design." Engineering Optimization, Vol. 41, No. 4, pp. 297-311. https://doi.org/10.1080/03052150802449227
  8. Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001) "A new heuristic optimization algorithm: Harmony search." Simulation, Vol. 76, No. 2, pp. 60-68. https://doi.org/10.1177/003754970107600201
  9. Gessler, J., and Walski, T.M. (1985). Water distribution system optimization. Technical Rep. EL-85-11, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, U.S.
  10. Kim, Y.N., and Lee, E.H. (2020). "Development of the metaheuristic optimization algorithm: Exponential bandwidth harmony search with centralized global search." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 21, No. 2, pp. 8-18.
  11. Lansey, K.E., and Mays, L.W. (1989). "Optimization model for water distribution system design." Journal of Hydraulic Engineering, Vol. 115, No. 10, pp. 1401-1418. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:10(1401)
  12. Lee, E.H. (2021). "Application of self-adaptive vision-correction algorithm for water-distribution problem." KSCE Journal of Civil Engineering, Vol. 25, No. 3, pp. 1106-1115. https://doi.org/10.1007/s12205-021-2330-9
  13. Lee, E.H., Lee, H.M., Yoo, D.G., and Kim, J.H. (2018). "Application of a meta-heuristic optimization algorithm motivated by a vision correction procedure for civil engineering problems." KSCE Journal of Civil Engineering, Vol. 22, No. 7, pp. 2623-2636. https://doi.org/10.1007/s12205-017-0021-3
  14. Lee, E.H., Yoo, D.G., Choi, Y.H., and Kim, J.H. (2016). "Development of the new meta-heuristic optimization algorithm inspired by a vision correction procedure: Vision correction algorithm." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 17, No. 3, pp. 117-126. https://doi.org/10.5762/KAIS.2016.17.3.117
  15. Lee, S.C., and Lee, S.I. (2001). "Genetic algorithms for optimal augmentation of water distribution networks." Journal of Korea Water Resources Association, Vol. 34, No. 5, pp. 567-575.
  16. Lee, S.Y., Yoo, D.G., Jung, D.H., and Kim, J.H. (2015). "Optimal life cycle design of water pipe system using genetic algorithm." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 6, pp. 4216-4227. https://doi.org/10.5762/KAIS.2015.16.6.4216
  17. MacQueen, J. (1967). "Some methods for classification and analysis of multivariate observations." Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, Statistics, Berkeley, CA, U.S., pp. 281-297.
  18. Maier, H.R., Simpson, A.R., Zecchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y., and Tan, C.L. (2003). "Ant colony optimization for design of water distribution systems." Water Resources Planning and Management, Vol. 129, No. 3, pp. 200-209.
  19. Mandl, C.E. (1981). "A survey of mathematical optimization models and algorithms for designing and extending irrigation and wastewater networks." Water Resources Research, Vol. 17, No. 4, pp. 769-775. https://doi.org/10.1029/WR017i004p00769
  20. Ministry of Environment (ME) (2022). 2020 Waterworks statistics.
  21. Monbaliu, J., Jo, J.H., Fraisse, C.W., and Vadas, R.G. (1990). "Computer aided design of pipe networks." Water resource systems application, Edited by Simonovic, S.P., Goulter, I.C., Burn, D.H., and Lence, B.J., Friesen Printers, Winnipeg, Canada,
  22. Montesinos, P., Garcia Guzman, A., and Ayuso, J.L. (1999). "Water distribution network optimization using a modified genetic algorithm." Water Resources Research, Vol. 35, No. 11, pp. 3467-3473. https://doi.org/10.1029/1999WR900167
  23. Reca, J., Martinez, J., Gil, C., and Banos, R. (2008). "Application of several meta-heuristic techniques to the optimization of real looped water distribution networks." Water Resources Management, Vol. 22, No. 10, pp. 1367-1379. https://doi.org/10.1007/s11269-007-9230-8
  24. Ryu, Y.M. (2022). Development and application of modified vision correction algorithm. Master's Thesis, Chungbuk University.
  25. Ryu, Y.M., and Lee, E.H. (2021a). "Application of modified hybrid vision correction algorithm for an optimal design of water distribution system." Journal of Korea Water Resources Association, Vol. 54, No. 7, pp. 475-484. https://doi.org/10.3741/JKWRA.2021.54.7.475
  26. Ryu, Y.M., and Lee, E.H. (2021b). "Development of hybrid vision correction algorithm." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 22, No. 1, pp. 61-73. https://doi.org/10.5762/KAIS.2021.22.7.61
  27. Saldarriaga, J., Paez, D., Salcedo, C., Cuero, P., Lopez, L.L., Leon, N., and Celeita, D. (2020). "A direct approach for the nearoptimal design of water distribution networks based on power use." Water, Vol. 12, No. 4, 1037.
  28. Savic, D.A., and Walters, G.A. (1997). "Genetic algorithms for leastcost design of water distribution networks." Journal of Water Resources Planning and Management, Vol. 123, No. 2, pp. 67-77. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
  29. Shamir, U. (1974). "Optimal design and operation of water distribution systems." Water Resources Research, Vol. 10, No. 1, pp. 27-36. https://doi.org/10.1029/WR010i001p00027
  30. Su, Y.C., Mays, L.W., Duan, N., and Lansey, K.E. (1987). "Reliability-based optimization model for water distribution systems." Journal of Hydraulic Engineering, Vol. 113, No. 12, pp. 1539-1556. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:12(1539)
  31. Vairavamoorthy, K., and Ali, M. (2000). "Optimal design of water distribution systems using genetic algorithms." Computer Aided Civil and Infrastructure Engineering, Vol. 15, No. 5, pp. 374-382. https://doi.org/10.1111/0885-9507.00201
  32. Vasan, A., and Simonovic, S.P. (2010). "Optimization of water distribution network design using differential evolution." Journal of Water Resources Planning and Management, Vol. 136, No. 2, pp. 279-287. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(279)
  33. Yoon, J.S., Yoo, D.G., Lee, H.M., and Kim, J.H. (2012). "Optimal leakage detection model of water distribution systems using semi-pressure driven analysis and harmony search." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 3, pp. 23-31. https://doi.org/10.9798/KOSHAM.2012.12.3.023
  34. Zheng, F., Simpson, A.R., and Zecchin, A.C. (2011). "A combined NLP differential evolution algorithm approach for the optimization of looped water distribution systems." Water Resources Research, Vol. 47, No. 8, W08531. doi: 10.1029/2011WR010394.