• Title/Summary/Keyword: Optimal computation

Search Result 640, Processing Time 0.024 seconds

Wavelength selection by loading vector analysis in determining total protein in human serum using near-infrared spectroscopy and Partial Least Squares Regression

  • Kim, Yoen-Joo;Yoon, Gil-Won
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4102-4102
    • /
    • 2001
  • In multivariate analysis, absorbance spectrum is measured over a band of wavelengths. One does not often pay attention to the size of this wavelength band. However, it is desirable that spectrum is measured at only necessary wavelengths as long as the acceptable accuracy of prediction can be met. In this paper, the method of selecting an optimal band of wavelengths based on the loading vector analysis was proposed and applied for determining total protein in human serum using near-infrared transmission spectroscopy and PLSR. Loading vectors in the full spectrum PLSR were used as reference in selecting wavelengths, but only the first loading vector was used since it explains the spectrum best. Absorbance spectra of sera from 97 outpatients were measured at 1530∼1850 nm with an interval of 2 nm. Total protein concentrations of sera were ranged from 5.1 to 7.7 g/㎗. Spectra were measured by Cary 5E spectrophotometer (Varian, Australia). Serum in the 5 mm-pathlength cuvette was put in the sample beam and air in the reference beam. Full spectrum PLSR was applied to determine total protein from sera. Next, the wavelength region of 1672∼1754 nm was selected based on the first loading vector analysis. Standard Error of Cross Validation (SECV) of full spectrum (1530∼l850 nm) PLSR and selected wavelength PLSR (1672∼1754 nm) was respectively 0.28 and 0.27 g/㎗. The prediction accuracy between the two bands was equal. Wavelength selection based on loading vector in PLSR seemed to be simple and robust in comparison to other methods based on correlation plot, regression vector and genetic algorithm. As a reference of wavelength selection for PLSR, the loading vector has the advantage over the correlation plot since the former is based on multivariate model whereas the latter, on univariate model. Wavelength selection by the first loading vector analysis requires shorter computation time than that by genetic algorithm and needs not smoothing.

  • PDF

The Calculation of Illuminance Distribution in Complex Interior using Montecarlo Simulation (몬테카를로 시뮬레이션을 이용한 다면 공간의 조도계산)

  • Kim, Hee-Chul;Chee, Chul-Kon;Kim, Hoon
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.6
    • /
    • pp.27-33
    • /
    • 1993
  • In order to improve complicated construction and complex control which are didvantage of optimal PWM technique aimed at harmonic elimination method, this paper presented MRA(Mode1 Reference Adaptive) PWM technique that gating signal of inverter is generated by comparing the reference signal with the induced feedback signal at the reference model of load. Design of controller is composed of microprocessor and analog circuit. MRA PWM technique used in the paper is able to compensate the degradation of voltage efficiency to be generated by the ratio of the output voltage to the DC supply voltage being low for using conventional sinusoidal PWM technique. When the trapezoidal signal is employed as the reference signal. the low order harmonics of line current can be reduced and the switching pattern is made by on-line computation using comparatively simple numerical analysis.

  • PDF

Analysis of Energy Consumption and Processing Delay of Wireless Sensor Networks according to the Characteristic of Applications (응용프로그램의 특성에 따른 무선센서 네트워크의 에너지 소모와 처리 지연 분석)

  • Park, Chong Myung;Han, Young Tak;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Wireless sensor networks are used for data collection and processing from the surrounding environment for various applications. Since wireless sensor nodes operate on low computing power, restrictive battery capacity, and low network bandwidth, their architecture model has greatly affected the performance of applications. If applications have high computation complexity or require the real-time processing, the centralized architecture in wireless sensor networks have a delay in data processing. Otherwise, if applications only performed simple data collection for long period, the distributed architecture wasted battery energy in wireless sensors. In this paper, the energy consumption and processing delay were analyzed in centralized and distributed sensor networks. In addition, we proposed a new hybrid architecture for wireless sensor networks. According to the characteristic of applications, the proposed method had the optimal number of wireless sensors in wireless sensor networks.

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

Computation of the Critical Lengths of the Vertical Grounding Electrode in Multi-Layered Soil Structures (다층 대지구조에서 수직 접지전극의 임계길이 산정)

  • Kim, Ki-Bok;Joe, Jeong-Hyeon;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • The grounding impedance is not lowered by expanding the dimension of the grounding electrode, and the length of grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical Length. In this paper, a new distributed parameter circuit model considering the condition of the multi-layered soil structures was proposed, and the grounding impedance and critical length of the vertical grounding electrode were analyzed by using the newly proposed simulation model and the MATLAB program. As a consequence, it was found that the effect of the soil structure on the frequency-dependent grounding impedance and critical length of the vertical grounding electrode is significant. It is desirable to consider the soil structure in optimal design of the grounding system.

Automatic Pose similarity Computation of Motion Capture Data Through Topological Analysis (위상분석을 통한 모션캡처 데이터의 자동 포즈 비교 방법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1199-1206
    • /
    • 2015
  • This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.

Remarshalling Planning for Multiple Automated Yard Cranes Considering Slack Time (여유시간을 고려한 다수 자동화 야드 크레인의 이적작업 일정계획)

  • Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Recently, container terminal operators have made efforts to develop an efficient remarshalling plan in response to the increase in automation of equipment handling and transport of containers in the terminals. Usually, containers are handled by multiple AYCs(automated yard cranes) in-yard in an automated container terminal, and terminal operators establish a remarshalling plan using slack time to increase the efficiency of ship operation. This study develops the optimal mathematical model through mixed integer programming as a solution to the problem of dispatching multiple AYCs. Considering the difficulty of direct application to the field due to computation time, we analyze the five prototypical dispatching rules for real world adaptation. A numerical experiment found that the maximum weight ratio (MR) rule and the maximum weight (MW) rule are the ideal dispatching solutions to the multiple AYCs dispatching problem.

A Study on Computation Methods of Monthly Runoff by Water Balance Method (물수지 개념을 이용한 월유출량 산정방법에 관한 연구)

  • Im, Dae-Sik;Kim, Hyeong-Su;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.713-724
    • /
    • 2001
  • Hydrologists have tried to develop monthly runoff simulation models which are important factor in wafer resources planning. One of the models called Kajiyama formu]a is widely used for monthly runoff simulation in Korea. In recent work by Xiong and Guo (1999), they suggested Two-parameter monthly water balance model to simulate the runoff and showed that the model can be used for the water resources planning program and the climate impact studies. However, they estimated two parameters of transformation of time scale, c and of the field capacity, SC by the trial and error method. Therefore, the purpose of this study is to suggest the estimation methodologies of c and SC, and compare Kajiyama formula with a Two-parameter monthly water balance model to simulate the runoff in Han river and IHP representative basins in Korea. The c is estimated by using the relationship of actual and potential evaporations, and SC is estimated from association with CN. We show that the estimated c and SC can be used as the initial or optimal values in the model.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.