• Title/Summary/Keyword: Optimal allocation scheme

Search Result 188, Processing Time 0.022 seconds

DCT-based Embedded Image Sequence Coding and Bit Allocation Scheme (DCT 기반 임베디드 동영상 부호화 및 최적 비트 배분의 기법)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.575-584
    • /
    • 2002
  • This paper presents a novel DCT-based embedded zero-tree coding and optimal bit allocation algorithm for image sequence coding. In order to fully utilize the structure of the conventional standard coding algorithm and improve the coding efficiency, motion estimation and compensation(ME/MC)-DCT hybrid coding structure and a modified zero-tree coding algorithm are applied. After the rearrangement DCT coefficients into pyramidal structure according to their significance on the decoded image quality, the modified embedded zero-tree coding is performed on layered coefficients. Moreover, for a given overall bit rates, a new optimal bit control scheme is proposed to achieve the best decoded image quality in the consecutive frames. The rate control scheme can also provide the equal quality of decoded image with the control of bit rate and distortion for each frame. The various simulation results are provided to evaluate the coding performance of the proposed scheme.

Optimal Cell Selection Scheme for Load Balancing in Heterogeneous Radio Access Networks (이종 무선 접속망에서의 과부하 분산을 위한 최적의 셀 선정 기법)

  • Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1102-1112
    • /
    • 2012
  • We propose a cell selection and resource allocation scheme that assigns users to nearby accessible cells in heterogeneous wireless networks consisting of macrocell, femtocells, and Wi-Fi access points, under overload situation. Given the current power level of all accessible cells nearby users, the proposed scheme finds all possible cell assignment mappings of which user should connect to which cell to maximize the number of users that the network can accommodate at the same time. We formulate the cell selection problem with heterogeneous cells into an optimization problem of binary integer programming, and compute the optimal solution. We evaluate the proposed algorithm in terms of network access failure compared to a local ad-hoc based cell selection scheme used in practical systems using network level simulations. We demonstrate that our cell selection algorithm dramatically reduces network access failure in overload situation by fully leveraging network resources evenly across heterogeneous networks. We also validate the practical feasibility in terms of computational complexity of our binary integer program by measuring the computation time with respect to the number of users.

Flow Control Throughput Performance Improvement of Adaptive Packet Length Allocation Scheme in Wireless Data Communication System (무선 데이타 통신 시스템에서 적응패킷길이할당방식을 이용한 흐름제어 기능 개선)

  • 정기호;박종영;금홍식;이상곤;류흥균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.11-18
    • /
    • 1995
  • Error detection in ARQ(Automatic Repeat Request) protocols is very important in wireless data communication systems. The throughput efficiency of ARQ protocols can be improved by dynamically adapting the protocol packet length so that it approaches the optimum value for throuhput efficiency. In this paper, a simple and novel adaptive packet length allocation method is proposed which transmits the packets with variable length by dyanmically estimating the channel codition. The simulation results show that the average of throughput is improved by 315.4% in the stop-and-wait protocol, 41.4% in the go-back-N protocol and 155.9% in the selective repeat protocol respectively. And the throughput performances of adaptive packet length allocation method approximately approach the theoritically optimal throughput performances.

  • PDF

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

Performance Analysis of Best Relay Selection in Cooperative Multicast Systems Based on Superposition Transmission (중첩 전송 기반 무선 협력 멀티캐스트 시스템에서 중계 노드 선택 기법에 대한 성능 분석)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.520-526
    • /
    • 2018
  • In this paper, considering the superposition transmission-based wireless cooperative multicast communication system (ST-CMS) with multiple relays and destinations, we propose a relay selection scheme to improve the data rate of multicast communication. In addition, we adopt the optimal power allocation coefficient for the superposition transmission to maximize the data rate of the proposed relay selection scheme. To propose the relay selection scheme, we derive an approximate expression for the data rate of the ST-CMS, and present the relay selection scheme using only partial channel state information based on the approximate expression. Moreover, we derive an approximate average data rate of the proposed relay selection scheme. Through numerical investigation, comparing the average data rates of the proposed relay selection scheme and the optimal relay selection scheme using full channel state information, we show that the proposed scheme provides extremely similar performance to the optimal scheme in the high signal-to-noise power ratio region.

Joint Relay Selection and Resource Allocation for Cooperative OFDMA Network

  • Lv, Linshu;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3008-3025
    • /
    • 2012
  • In this paper, the downlink resource allocation of OFDMA system with decode-and-forward (DF) relaying is investigated. A non-convex optimization problem maximizing system throughput with users' satisfaction constraints is formulated with joint relay selection, subcarrier assignment and power allocation. We first transform it to a standard convex problem and then solve it by dual decomposition. In particular, an Optimal resource allocation scheme With Time-sharing (OWT) is proposed with combination of relay selection, subcarrier allocation and power control. Due to its poor adaption to the fast-varying environment, an improved version with subcarrier Monopolization (OWM) is put forward, whose performance promotes about 20% compared with that of OWT in the fast-varying vehicular environment. In fact, OWM is the special case of OWT with binary time-sharing factor and OWT can be seen as the tight upper bound of the OWM. To the best of our knowledge, such algorithms and their relation have not been accurately investigated in cooperative OFDMA networks in the literature. Simulation results show that both the system throughput and the users' satisfaction of the proposed algorithms outperform the traditional ones.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Resource Allocation and Offloading Decisions of D2D Collaborative UAV-assisted MEC Systems

  • Jie Lu;Wenjiang Feng;Dan Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.211-232
    • /
    • 2024
  • In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.

Power Allocation and Splitting Algorithm for SWIPT in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 SWIPT를 위한 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • In the next generation wireless communication systems, an energy harvesting from radio frequency signals is considered as a method to solve the lack of power supply problem for sensors. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer in energy harvesting networks with channel estimation error. At first, we find an optimal channel training interval using one-dimensional exhaustive search, and estimate a channel using MMSE channel estimator. Based on the estimated channel, we propose a power allocation and splitting algorithm for maximizing the data rate while guaranteeing the minimum required harvested energy constraint, The simulation results confirm that the proposed algorithm has an insignificant performance degradation less than 10%, compared with the optimal scheme which assumes a perfect channel estimation, but it can improve the data rate by more than 20%, compared to the conventional scheme.