• Title/Summary/Keyword: Optimal Technique

Search Result 3,194, Processing Time 0.039 seconds

Optimization of Pin-hole Location to Minimize Stress Concentration around Hole in Rotating Disc under Centrifugal Force (원심력을 받는 회전원판내 원공주위 응력집중 최소화를 위한 핀홀위치 최적화)

  • 한동섭;한근조;김태형;심재준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.131-138
    • /
    • 2004
  • The objective of this paper is to decide optimal location of a pin-hole to minimize stress concentration around the hole in a rotating disc. The focus of this investigation is to evaluate the effect of pin-hole on stress distribution around the hole using optimum design technique and finite element analysis. Design variables are the radial and the angular location of pin-hole from center of the hole and objective function is the maximum stress around hole in a rotating disc. Using first order method of optimization technique, we found that the maximum equivalent stress around the hole with optimized pin-hole could be reduced by 15.1% compared to that without pin-hole.

A Study on Analysis of Dimensional Error of Projector for Formulations of Measurement Automation (측정 자동화 구축을 위한 투영기의 치수오차 분석에 관한 연구)

  • Choi, Jisun;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.114-118
    • /
    • 2021
  • In this research, the dimensional error of the measured specimen according to the measurement method was analyzed for the length, angle, radius of curvature and diameter using a projector which is used in industry. One-way analysis was performed on each data tested 30 times using a statistical technique. Through the experiment, it was found that an error occurred in each data when measuring the length and radius of curvature according to the measurement method, and the null hypothesis that no error occurred when measuring the angle and length was established. Based on this experimental data, the automatic measurement when measuring the projector causes less measurement error, so automatic measurement is recommended when measuring a small product. Also, an optimal measuring method is suggested for securing reliability on formulations of measurement automation.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

On the Minimization of the Multi-output Switching Function by Using the Intersection Table

  • Hwang, Hee-Yeung;Cho, Dong-Sub;Kim, Ho-Kyum
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.26-28
    • /
    • 1979
  • The optimal selection of Prime Implications for the multi-output switching function is difficult task, as the input variables increase. This paper is concerned with the technique for the minimization of the multi-output switching function using the intersection table. This procedure is applicable to both manual and computer-programmed realization without complexity.

  • PDF

Performance analyses of RHLQG/FIRF controller

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.88-94
    • /
    • 1993
  • In this paper we analyze the RHLQG/FIRF optimal.contol law presented in [4,5] in order to stabilizes a stochastic linear time varying systems with modeling uncertainty. It is shown by the frequency domain analysis that the RHC is robuster than the LQ control law. Explicit LTR procedures are given to improve the robust performance of RHLQC/FIRF cotrol law. Using the mismatching function technique [8], we propose an LTR method which makes the RHLQG/FIRF controller recover the feedback properties of the R.HC law. Also we compare the LTR performance of the RHLQC/FIRF via simulation with conventional LTR methods.

  • PDF

Parameter Design Using Probabilistic Methodology For Resistive HTS- FCL

  • Yoon, Jae-Young;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.26-29
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO system is much higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. As the superconductivity technology has developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. But the parameters of HTS-FCL should be designed optimally to have the best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using Monte Carlo technique.

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

Backward Extrusion Process Analysis and Ductile Fracture Minimization of Titanium (티타늄합금의 후방압출 공정해석 및 연성파괴 최소화)

  • 신태진;이유환;이종수;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.351-354
    • /
    • 2003
  • Titanium alloys are a vital element for developing advanced structural components, especially in aerospace applications. However, process design for successful forming of titanium alloy is a difficult task, which is to be achieved within a very narrow range of process parameters. Presented in this paper is a finite element - based optimal design technique as applied to ductile fracture minimization process design in backward extrusion of titanium alloys.

  • PDF

A Study on the Analysis of Power System Stability using MGPSS (MGPSS를 이용한 전력계통안정도 해석)

  • Lee, Sang-Keun;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.165-167
    • /
    • 2007
  • This paper presents a analysis method for power system stability using a Modified Genetic-based Power System Stabilized(MGPSS). The proposed MGPSS parameters are optimized using Modified Genetic Algorithm(MGA) in order to maintain optimal operation of generator under the various operating conditions. To improve the convergence characteristics, real variable string is adopted. The results tested on a single machine infinite bus system verify that the proposed controller has better dynamic performance than conventional controller.

  • PDF