• Title/Summary/Keyword: Optimal Solution algorithm

Search Result 1,314, Processing Time 0.029 seconds

Solution Algorithms for Logit Stochastic User Equilibrium Assignment Model (확률적 로짓 통행배정모형의 해석 알고리듬)

  • 임용택
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.95-105
    • /
    • 2003
  • Because the basic assumptions of deterministic user equilibrium assignment that all network users have perfect information of network condition and determine their routes without errors are known to be unrealistic, several stochastic assignment models have been proposed to relax this assumption. However. it is not easy to solve such stochastic assignment models due to the probability distribution they assume. Also. in order to avoid all path enumeration they restrict the number of feasible path set, thereby they can not preciously explain the travel behavior when the travel cost is varied in a network loading step. Another problem of the stochastic assignment models is stemmed from that they use heuristic approach in attaining optimal moving size, due to the difficulty for evaluation of their objective function. This paper presents a logit-based stochastic assignment model and its solution algorithm to cope with the problems above. We also provide a stochastic user equilibrium condition of the model. The model is based on path where all feasible paths are enumerated in advance. This kind of method needs a more computing demand for running the model compared to the link-based one. However, there are same advantages. It could describe the travel behavior more exactly, and too much computing time does not require than we expect, because we calculate the path set only one time in initial step Two numerical examples are also given in order to assess the model and to compare it with other methods.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

Real-Time, Simultaneous and Proportional Myoelectric Control for Robotic Rehabilitation Therapy of Stroke Survivors (뇌졸중 환자의 로봇 재활 치료를 위한 실시간, 동시 및 비례형 근전도 제어)

  • Jung, YoungJin;Park, Hae Yean;Maitra, Kinsuk;Prabakar, Nagarajan;Kim, Jong-Hoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.1
    • /
    • pp.79-88
    • /
    • 2018
  • Objective : Conventional therapy approaches for stroke survivors have required considerable demands on therapist's effort and patient's expense. Thus, new robotics rehabilitation therapy technologies have been proposed but they have suffered from less than optimal control algorithms. This article presents a novel technical healthcare solution for the real-time, simultaneous and propositional myoelectric control for stroke survivors' upper limb robotic rehabilitation therapy. Methods : To implement an appropriate computational algorithm for controlling a portable rehabilitative robot, a linear regression model was employed, and a simple game experiment was conducted to identify its potential of clinical utilization. Results : The results suggest that the proposed device and computational algorithm can be used for stroke robot rehabilitation. Conclusion : Moreover, we believe that these techniques will be used as a prominent tool in making a device or finding new therapy approaches in robot-assisted rehabilitation for stroke survivors.

Joint Price and Lot-size Determination for Decaying Items with Ordering Cost Inclusive of a Freight Cost under Trade Credit in a Two-stage Supply Chain (2 단계 신용거래 공급망에서 운송비용이 포함된 주문 비용을 고려한 퇴화성제품의 재고정책 및 판매가격 결정 모형)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.191-197
    • /
    • 2020
  • As an effective means of price discrimination, some suppliers offer trade credit to the distributors for the purpose of increasing the demand of the product they produce. The availability of the delay in payments from the supplier enables discount of the distributor's selling price from a wider range of the price option in anticipation of increased customer's demand. In this regard, we consider the problem of determining the distributor's optimal price and lot size simultaneously when the supplier permits delay in payments for an order of a product whose demand rate is represented by a constant price elasticity function. It is assumed that the distributor pays the shipping cost for the order and hence, the distributor's ordering cost consists of a fixed ordering cost and the shipping cost that depend on the order quantity. For the analysis, it is also assumed that inventory is depleted not only by customer's demand but also by decay. We are able to develop a solution algorithm from the properties of the mathematical model. A numerical example is presented to illustrate the algorithm developed.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

Development of Improved Clustering Harmony Search and its Application to Various Optimization Problems (개선 클러스터링 화음탐색법 개발 및 다양한 최적화문제에 적용)

  • Choi, Jiho;Jung, Donghwi;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.630-637
    • /
    • 2018
  • Harmony search (HS) is a recently developed metaheuristic optimization algorithm. HS is inspired by the process of musical improvisation and repeatedly searches for the optimal solution using three operations: random selection, memory recall (or harmony memory consideration), and pitch adjustment. HS has been applied by many researchers in various fields. The increasing complexity of real-world optimization problems has created enormous challenges for the current technique, and improved techniques of optimization algorithms and HS are required. We propose an improved clustering harmony search (ICHS) that uses a clustering technique to group solutions in harmony memory based on their objective function values. The proposed ICHS performs modified harmony memory consideration in which decision variables of solutions in a high-ranked cluster have higher probability of being selected than those in a low-ranked cluster. The ICHS is demonstrated in various optimization problems, including mathematical benchmark functions and water distribution system pipe design problems. The results show that the proposed ICHS outperforms other improved versions of HS.

An Equality-Based Model for Real-Time Application of A Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 적용을 위한 변동등식의 응용)

  • Shin, Seong-Il;Ran, Bin;Choi, Dae-Soon;Baik, Nam-Tcheol
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.129-147
    • /
    • 2002
  • This paper presents a variational equality formulation by Providing new dynamic route choice condition for a link-based dynamic traffic assignment model. The concepts of used paths, used links, used departure times are employed to derive a new link-based dynamic route choice condition. The route choice condition is formulated as a time-dependent variational equality problem and necessity and sufficiency conditions are provided to prove equivalence of the variational equality model. A solution algorithm is proposed based on physical network approach and diagonalization technique. An asymmetric network computational study shows that ideal dynamic-user optimal route condition is satisfied when the length of each time interval is shortened. The I-394 corridor study shows that more than 93% of computational speed improved compared to conventional variational inequality approach, and furthermore as the larger network size, the more computational performance can be expected. This paper concludes that the variational equality could be a promising approach for real-time application of a dynamic traffic assignment model based on fast computational performance.

Dynamic Block Reassignment for Load Balancing of Block Centric Graph Processing Systems (블록 중심 그래프 처리 시스템의 부하 분산을 위한 동적 블록 재배치 기법)

  • Kim, Yewon;Bae, Minho;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.5
    • /
    • pp.177-188
    • /
    • 2018
  • The scale of graph data has been increased rapidly because of the growth of mobile Internet applications and the proliferation of social network services. This brings upon the imminent necessity of efficient distributed and parallel graph processing approach since the size of these large-scale graphs are easily over a capacity of a single machine. Currently, there are two popular parallel graph processing approaches, vertex-centric graph processing and block centric processing. While a vertex-centric graph processing approach can easily be applied to the parallel processing system, a block-centric graph processing approach is proposed to compensate the drawbacks of the vertex-centric approach. In these systems, the initial quality of graph partition affects to the overall performance significantly. However, it is a very difficult problem to divide the graph into optimal states at the initial phase. Thus, several dynamic load balancing techniques have been studied that suggest the progressive partitioning during the graph processing time. In this paper, we present a load balancing algorithms for the block-centric graph processing approach where most of dynamic load balancing techniques are focused on vertex-centric systems. Our proposed algorithm focus on an improvement of the graph partition quality by dynamically reassigning blocks in runtime, and suggests block split strategy for escaping local optimum solution.

Additive hazards models for interval-censored semi-competing risks data with missing intermediate events (결측되었거나 구간중도절단된 중간사건을 가진 준경쟁적위험 자료에 대한 가산위험모형)

  • Kim, Jayoun;Kim, Jinheum
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.539-553
    • /
    • 2017
  • We propose a multi-state model to analyze semi-competing risks data with interval-censored or missing intermediate events. This model is an extension of the three states of the illness-death model: healthy, disease, and dead. The 'diseased' state can be considered as the intermediate event. Two more states are added into the illness-death model to incorporate the missing events, which are caused by a loss of follow-up before the end of a study. One of them is a state of the lost-to-follow-up (LTF), and the other is an unobservable state that represents an intermediate event experienced after the occurrence of LTF. Given covariates, we employ the Lin and Ying additive hazards model with log-normal frailty and construct a conditional likelihood to estimate transition intensities between states in the multi-state model. A marginalization of the full likelihood is completed using adaptive importance sampling, and the optimal solution of the regression parameters is achieved through an iterative quasi-Newton algorithm. Simulation studies are performed to investigate the finite-sample performance of the proposed estimation method in terms of empirical coverage probability of true regression parameters. Our proposed method is also illustrated with a dataset adapted from Helmer et al. (2001).