• 제목/요약/키워드: Optimal Sensitivity

검색결과 1,234건 처리시간 0.03초

경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석 (Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method)

  • 이부윤;임문혁
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.

Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1093-1117
    • /
    • 2016
  • Global sensitivity analysis (GSA) has been widely used to investigate the sensitivity of the model output with respect to its input parameters. In this paper a new single-solution search optimization algorithm is developed based on the GSA, and applied to the size optimization of truss structures. In this method the search space of the optimization is determined using the sensitivity indicator of variables. Unlike the common meta-heuristic algorithms, where all the variables are simultaneously changed in the optimization process, in this approach the sensitive variables of solution are iteratively changed more rapidly than the less sensitive ones in the search space. Comparisons of the present results with those of some previous population-based meta-heuristic algorithms demonstrate its capability, especially for decreasing the number of fitness functions evaluations, in solving the presented benchmark problems.

연료비 최소화를 위한 유무효 발전력 분담 (Minimization of Fuel Cost by Optimal Generation)

  • 이상중
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.289-290
    • /
    • 2003
  • This paper gives a method for the minimization of the fuel cost by optimal generation. Derivation of the sensitivity of system loss by optimization technique is introduced and the loss sensitivities are substituted into the optimality conditions to obtain the minimized fuel cost.

  • PDF

모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석 (Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat)

  • 최보엽;손창련;손준식;박민호;송창용
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • 한국지구과학회지
    • /
    • 제45권4호
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

도루묵 수산자원회복계획 하에서 동해구기선저인망어업의 최적 어획노력량과 어획량 수준 결정에 관한 탐색적 연구 (An Exploratory Study on Determining Optimal Fishing Effort and Production Levels of Danish Seine Fishery under the Sandfish Stock Rebuilding Plan)

  • 최종열;김도훈
    • 수산경영론집
    • /
    • 제43권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Based on Clark and Munro's theory of dynamic optimization between fishery resources and production, this study is aimed to take an empirical analysis of optimal production level to the Danish Seine fishery under the sandfish stock rebuilding plan. For empirical analysis, it examined the optimal fish stock size, production and fishing effort levels and it also made an additional evaluation of optimal production changes on main variables by sensitivity analyses. When a 4% of the discount rate is assumed, the optimal sandfish production of Danish Seine fishery would be 3,049 t, and the sandfish optimal stock size is evaluated to be 19,016 t. In addition, the optimal fishing effort is estimated to be 4,368 days. Accordingly, to achieve the optimal production level, current fishing efforts should be reduced while the fish stock size should be increased up to the optimal level.

경계적분방정식을 이용한 축대칭 열전도 고체의 형상설계민감도 해석 (Shape Design Sensitivity Analysis of Axisymmetric Thermal Conducting Solids Using Boundary Integral Equations)

  • 이부윤
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.141-152
    • /
    • 1993
  • 본 연구에서는 축대칭 열전도 고체의 형상설계민감도 해석을 위하여 2차원 문 제를 다룬 Lee, Choi와 Kwak의 방법을 축대칭 문제로 확장하였다.축대칭 형태로 표 시된 직접 및 간접 경계적분방정식의 정식화에 기초하여 전미분방접과 보조변수방법으 로 형상최적화 문제에서 발생하는 일반적인 성능 범함수의 형상설계민감도 공식을 유 도하고, 온도 및 열속의 제한조건에 이를 응용하였다. 제시된 민감도해석방법의 정 확성을 검증하기 위하여 해석적인 해를 갖는 원통문제와 구문제를 다루었는데, 두 문 제에 대하여 민감도 공식을 이용하여 수치계산된 결과를 해석적인 민감도와 비교하였 다. 또한 복잡한 수치해로서 냉각핀(cooling fin)문제를 다루었으며, 민감도 공식에 의한 계산 결과를 유한차분(finite difference)으로 수치미분한 결과와 비교하였다.

페리다이나믹스 이론과 병렬연산을 이용한 균열진전 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Dynamic Crack Propagation Problems using Peridynamics and Parallel Computation)

  • 김재현;조선호
    • 한국전산구조공학회논문집
    • /
    • 제27권4호
    • /
    • pp.297-303
    • /
    • 2014
  • 페리다이나믹스 이론과 이진분해 기법의 병렬연산을 이용하여 동적 균열진전 문제에 대한 애조인 형상 설계민감도 해석법을 개발하였다. 페리다이나믹스에서는 균열의 연속적인 분기를 다룰 수 있으며, Explicit 시간적분법을 채택한다. 설계민감도 해석은 애조인 변수법은 경로의존성 문제에는 적합하지 않으나 여기서는 응답해석의 경로를 이미 알고 있으므로 채택하여 사용할 수 있었다. 얻어진 해석적 설계민감도는 유한차분과 비교하여 그 정확성을 검증하였다. 유한차분법은 설계섭동량에 민감하여 비선형성이 강한 페리다이나믹스 문제에서 부정확한 설계민감도를 제시할 수 있다. 정확한 설계민감도 해석을 위해서는 이산화과정에서 $C^1$ 연속성을 가지는 체적율이 필요함을 알 수 있었다.

구조물의 최적안전지수와 생애주기비용의 상관관계에 관한 연구 (A Study on the Correlation between Optimal Safety of Structures and Minimization of Life Cycle Cost(LCC))

  • 방명석
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.94-98
    • /
    • 2014
  • 본 연구는 구조물의 최적안전수준과 수명기간동안 투자되는 총비용과의 상관관계를 연구하였다. 설계, 건설 및 공용 중 투자되는 총비용을 최소화하면서 최적의 안전수준을 결정하기 위하여 신뢰성해석을 수행하였다. 신뢰성해석에는 설계인자들의 불확실성과 설계 및 공사, 유지관리를 수행하는 인간의 오류 등 인적 불확실성을 확률변수로 고려하였다. 이러한 확률해석을 통한 안전지수와 생애주기비용의 상관관계를 연구하고, 생애주기비용의 분산도에 따른 안전지수의 민감도해석을 통하여 최적의 안전수준을 결정하였다. 해석결과는 이러한 평가방법이 교통시설물에 투자되는 비용을 최소화하면서 최적의 안전수준을 결정할 수 있는 정확하고 유용한 방법임을 보여주었다.

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.