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Abstract: We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of

significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed

higher SWH in mid-latitude regions (30
o

 to 60
o

 in both hemispheres) due to stronger winds, whereas equatorial and

coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error

(RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude

areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial

RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the

quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in

analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated

significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However,

some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters.

Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally

degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields,

though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter

tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of

region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean

dynamics, improving navigation, and supporting coastal management practices.

Keywords: Significant Wave Height, Ensemble Optimal Interpolation, Ensemble Size, Decorrelation Length Scale,

Background Error Covariance Rescaling

1. Introduction

Accurate predictions of significant wave height

(SWH) play a critical role across various industries

and in coastal management practices. SWH, which

represents the average height of the highest third of

waves in a wave field and serves as a key indicator of

wave energy, is essential for understanding and preparing

for wave conditions. Advancements in remote sensing

and sensor technology have revolutionized the collection

of SWH data, enabling the integration of data from

satellites and distributed wave sensors into wave

models through a process known as data assimilation

(Daniel et al., 2011; Hisaki, 2005; Mitsuyasu et al.,

1980; Rapizo et al., 2015; Walsh et al., 1989;

Gommenginger et al., 2003; Lzaguirre et al., 2011;

Queffeulou, 2004). This integration presents a promising

opportunity to enhance the accuracy of SWH predictions,

thus improving decision making in industries dependent

on wave conditions and coastal management strategies.

However, assimilating data from satellites and

distributed wave sensors using wave models poses

significant challenges. These challenges stem from

potential differences in spatial and temporal resolution,

as well as errors in measurements that must be
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carefully considered and corrected during the data

assimilation process. Despite these obstacles, utilizing

satellite and distributed wave sensor data in data

assimilation has the potential to significantly boost the

precision of SWH forecasts, thereby providing

valuable insights into wave behavior and trends.

Wave models such as SWAN (Booij et al., 1999)

and WAVEWATCH III (The WAVEWATCH III
®

Development Group, 2019) (WW3) are widely used

for various applications, including weather forecasting,

offshore platform operations, marine activities, and

disaster prevention. However, these modelling systems

have limited performance in prediction due to

computational costs and inaccuracies in the input data,

including inaccuracies in the wind field used for

forcing. It is imperative to refine and calibrate the

numerical models by adjusting the parameters and

initial conditions. Data assimilation emerges as a

crucial technique in this process, as it combines model

data with observations to create an analysis field that

best represents the state required for accurate numerical

model calculations.

Data assimilation methods play a crucial role in

enhancing wave prediction accuracy by integrating

diverse data sources into wave models. In particular,

optimal interpolation (OI), three-dimensional variational

assimilation (3D-Var), and four-dimensional variational

assimilation (4D-Var) are widely employed methods,

with OI standing out due to its operational ease and

relatively low cost (Bouttier and Courtier, 2002).

Furthermore, ensemble optimal interpolation (EnOI)

offers advantages in terms of saving computing time

(Evensen, 2003). However, the integration of satellite

and distributed wave sensor data presents challenges

due to their unique characteristics and potential errors.

Despite these challenges, incorporating these data

potentially leads a significant advancement in improving

wave prediction capabilities.

For ocean forecasting, OI and 3D-Var methods are

commonly used due to their computational efficiency

(Cummings and Smedstad, 2009). However, these

methods have limitations in capturing ocean states

because they rely on Gaussian background error

covariance (BEC). To address these limitations, there

is growing interest in Kalman filter-type assimilation

methods and 4D-Var, which consider flow-dependent

BEC. The ensemble Kalman filter (EnKF), proposed

by Evensen (1994), is a practical data assimilation

method that forecasts error statistics using the Monte

Carlo method. Despite its advantages, the original

version of the EnKF has issues with rank deficiency,

which can lead to ensemble collapse when using a

small number of members. Various approaches, such

as addressing model errors, localization, background

error inflation, and adjusting new prior probability

density functions, have been suggested to resolve this

deficiency.

In situations with limited computational resources,

EnOI offers a cost-effective alternative to EnKF (Oke

et al., 2007; Kim et al., 2015). EnOI estimates BEC

using a stationary ensemble, in contrast to the

ensemble model runs of EnKF. To account for flow

dependence based on seasonality, Xie and Zhu (2010)

introduced seasonally varying quasi-stationary ensembles

to the EnOI.

Wittmann and Cummings (2005) utilized the OI

method to successfully assimilate altimeter data into a

global WW3 model, validating their approach using

buoy data. Waters et al. (2013) applied OI to integrate

high-frequency radar data into a high-resolution WW3

model in the Celtic Sea, with a particular emphasis on

refining the background error covariance matrix to

accurately reflect local conditions. Yu et al. (2018)

demonstrated that using multiple satellite datasets in a

global wave model improved prediction accuracy,

while Li and Zhang (2020) employed OI to correct

model bias in global wave models using satellite data

from Jason-2, Jason-3, and SARAL. Qi and Cao

(2015) applied EnOI in the Indian Ocean, focusing on

the seasonal impacts of assimilating Jason-2 data. Liu

et al. (2023) further advanced this by implementing a

local EnOI scheme to assimilate significant wave

heights from HY-2B altimeter data in the China Seas.

Saulter et al. (2020) used 3DVAR in a regional wave

model for the northwest European shelf, exploring the

added value of integrating in situ observations alongside
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satellite data.

This study aims to evaluate the effectiveness of

EnOI in improving the analysis of SWH within wave

models using satellite-derived SWH data. By exploring

various data assimilation configurations and assessing

their sensitivity, this study seeks to contribute to the

development of enhanced strategies for SWH analysis,

which can be valuable for industries and coastal

management reliant on accurate wave forecasts.

Building on existing knowledge of data assimilation

methods and their applications in wave modeling, this

study aspires to enhance the reliability and precision

of wave analysis fields.

2. Data and Methods

2.1. WAVEWATCH III

In this study, we utilized the WW3 developed by

the National Oceanic and Atmospheric Administration

(NOAA) and the United States National Centers for

Environmental Prediction (NCEP). WW3 is a sophisticated

tool designed to predict various characteristics of

ocean waves. By employing mathematical equations,

the model can simulate wave behavior based on

factors such as winds, currents, and bathymetry. As a

result, it can generate forecasts for different weather

and ocean conditions. WW3 is widely used in marine

safety, offshore engineering design, and wave forecasting,

offering global-scale forecasts various days in advance,

as well as high-resolution regional predictions for

specific coastal areas.

The WW3 marks a significant advancement in wave

modeling compared to its predecessors, WAVEWATCH I

and II. WW3 incorporates various key improvements

in its governing equations, model structure, numerical

methods, and physical parameterizations (Komen et

al., 1994; WAMDI Group, 1988). It is considered a

comprehensive framework that incorporates the latest

scientific advancements in wind-wave modeling and

dynamics.

In this study, we used the WW3 model with

reanalyzed wind fields obtained from the Korea

Meteorological Administration. These wind fields have

a spatial resolution of 1/4° and are updated hourly. To

ensure stable conditions for our simulations, we

implemented a spin-up period of 1 year. After

achieving stability, model simulations were performed

to generate the necessary data for 12 months. These

results were then used as the historical ensembles for

calculating the background error covariance in the

EnOI. The data assimilation experiments and historical

ensemble run were conducted from May 2020 to April

2021.

2.2. Data Assimilation

In this study, EnOI was employed to assimilate

SWH obtained from satellite altimeters. The performance

of EnOI was evaluated by assessing its effectiveness

under various configurations and comparing it with

the results from optimal interpolation. Representing

the Kalman gain matrix as K, the optimal wave

analysis field ( ) is given as follows (Eqs. [1] and

[2]):

(1)

(2)

where  represents the forecast state vector. d is the

observation vector and H is the observation operator

that transforms from the model grid to the observation

grid. P
f
 and R represent the background and observation

error covariance matrices, respectively. The superscript

T denotes the matrix transpose.

EnOI is based on the work of Evensen (2003) and

the analysis approach of Burgers et al. (1998). In this

study, we develop an OI scheme in which the analysis

is computed in the space spanned by a stationary

ensemble of sampled model states over a long integration

period. EnOI estimates the BEC matrix by creating a

stationary and historical ensemble where statistical

errors do not develop over time. EnOI estimates the

BEC matrix P
f
 as follows (Eqs. [3] and [4]):

(3)

(4)

where Ne is the ensemble size,  (∈0,1) is introduced
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as a scaling factor to reduce the variance (Counillon

and Bertino, 2009), A' is a stationary and historical

ensemble, and  is the i-th ensemble member from

historical model run. The historical ensemble members

were extracted from the historical run data, selecting

daily data both before and after the assimilation date,

centered around it, to ensure the required number of

ensemble members is obtained. In this study, the

scaling factor  was set to 0.25 (Oke et al., 2002;

Kim et al., 2015). To derive the BEC, ensemble

members were chosen from one year of pre-run model

integration from May 2020 to May 2021 without data

assimilation. For example, the ensemble consisted of

Ne members, with Ne/2 members representing the days

before the target day and the remaining Ne/2 members

representing the days after the target day.

An ensemble-based data assimilation system can

over-estimate correlations between long-distance points

that are likely to be independent of each other when

a small number of ensemble members are used. To

reduce this sampling error, a localization technique

(Houtekamer and Mitchell, 2001; Hamill et al., 2001;

Oke et al., 2007; Kim et al., 2015) was applied using

the Schur product formulation (Gaspari and Cohn,

1999). After applying localization, the Kalman gain

matrix was expressed as follows (Eqs. [5] and [6]):

= (5)

(6)

where  is calculated as a function of the distance

(L) between xi and xj.  is given as a function of the

decorrelation length scale, which has a value of 0-1.

As the distance between two points increases, 

approaches 0, and when the distance exceeds a certain

length,  becomes 0.

During the data assimilation process, a data assimilation

system was constructed by assimilating the SWH

observed by satellite with EnOI to produce an analysis

field, which was then used as the initial field for the

subsequent model run (Fig. 1).

We assimilated SWH data from satellite altimeters

provided by the Copernicus Marine Service. The

altimetric data from Jason-3, Sentinel-3A, AltiKa, and

CryoSat-2 satellites were utilized for data assimilation,

which were provided by the Copernicus Marine

Service; the spatial resolution of these data is less than

7 km. Jason-3 and Sentinel-3A orbit the Earth every

10 and 27 days, respectively, whereas AltiKa and

CryoSat-2 do not have a constant period.

2.3. BEC rescaling

Generally, in the EnOI (Evensen, 2003), the BEC

does not change over time. However, in this study, a

data assimilation system was developed to obtain

optimal weights by adjusting the BEC to consider the

innovation term, which represents the difference

between the model and the observation.

The innovation ( ) at the observed point can

be expressed as the sum of the observation error

( ) and the background error ( )

where  is the true state (Fig. 4 in Bouttier and

Courtier, 2002). As the observation error covariance

increases, the value of the BEC decreases for the

innovation term. Conversely, when the BEC increased,

the observed error covariance decreased. This means

that if the BEC is large and the observation error

covariance is small, the observation will be assigned

greater weight in the data assimilation process,

potentially reducing the weight of the background
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Fig. 1. Schematic diagram of data assimilation system in

WAVEWATCH III (WW3). SWH, significant wave height
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field. The BEC rescaling helps mitigate the problem

of overfitting, in which observations are excessively

assimilated.

The relationship between the BEC, observation error

covariance, and the rescaling process is shown in the

following formula (Bouttier and Courtier, 2002):

(7)

(8)

Here,  and  are the observation error covariance

and BEC at the observation point, respectively. From

Eqs. (7) and (8), the square of the innovation is

expected to be the sum of the observation error

covariance and BEC. The rescaled BEC can be

expressed as follows (Eq. [9]):

(9)

However, increasing the BEC directly presents a

challenge, as it not only changes the error variance at

the inflated grid point but also impacts the error

covariance at neighboring grid points (Miyoshi, 2011).

Hence, we employed a strategy that involved indirectly

adjusting the BEC, by modifying the observation error

covariance instead, following Miyoshi (2011). The

rescaled observation error covariance is expressed as

follows (Eq. [10]):

(10)

Theoretically, the background error covariance and

the observation error covariance are independent.

However, when estimating these covariances, the

background error covariance is rescaled based on the

fact that the innovation term at observation points is

given by the sum of the background error covariance

and the observation error covariance (Bouttier and

Courtier, 2002).

This study conducted an experiment to optimize the

performance of wave data assimilation by applying the

rescaling of BEC to the data assimilation process.

2.4. Experiment Design

Table 1 lists the configurations of sensitivity

experiments conducted on the EnOI data assimilation

method. These experiments focused on four key

parameters: number of ensembles, decorrelation length

scale, observation error covariance, and rescaling of

BEC. In Liu et al. (2023), the observation error was

set to 0.1 by comparing satellite data with buoy data.

Following this approach, in the Ex.En3 and Ex.En4

experiments of this study, we set the observation error

to 0.1 m. For the Ex.En0, Ex.En1 and Ex.En2, to

explore the sensitivity of the model to the observation

error, the observation error was set to 0.5 m. Our

study evaluates the performance of EnOI under various

configurations (labeled Ex.En0-4) by comparing them

to a control (CTL) run without data assimilation. This

approach allows us to assess the impact of each

parameter on the performance of the model and

identify the optimal settings for wave prediction in our

study area.

2.5. Validation

To compare and validate the results of the WW3

model with data assimilation applied, analyzed satellite

SWH data from various sources, including CFOSAT,

Cryosat2, HaiYang-2B, Jason-3, SARAL-Altika, Sentinel-

3A, and Sentinel-3B, provided by the Copernicus
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Table 1. List of experimental cases

Exp. Name CTL Ex.En0 Ex.En1 Ex.En2 Ex.En3 Ex.En4

Data Assimilation Method - EnOI EnOI EnOI EnOI EnOI

Number of Ensembles - 31 61 61 61 61

Decorrelation Length (km) - 500 500 1000 1000 1000

Observation Error - 0.5 0.5 0.5 0.1 0.1

Rescaling BEC - - - - - O

EnOI, ensemble optimal interpolation; BEC, background error covariance
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Marine Service, along with the National Data Buoy

Center (NDBC) data, were used. The analyzed SWH

data were employed for validation of spatial distribution,

whereas the buoy data were utilized for comparing

time series at specific locations.

Fig. 2 displays the SWH data obtained from

satellite observations, providing a comprehensive view

of global wave height characteristics. The data

highlight several key patterns. In mid-latitude regions,

particularly around 30
o
-60

o
 north and south, SWHs are

notably higher. This is largely due to the stronger

winds prevalent in these areas, which generate larger

waves. Conversely, in the equatorial regions, the SWHs

are considerably lower. Calmer wind conditions in

these regions result in smaller waves. Additionally,

coastal areas also exhibit lower SWHs, influenced by

the interaction of wind patterns, ocean currents, and

the presence of landmasses that disrupt wave formation.

Understanding the spatial distribution of wave heights

is crucial for understanding ocean dynamics, navigation,

and coastal management.

The NDBC buoy data were derived from the

NOAA (http://www.ndbc.noaa.gov). To compare and

validate the results of the low-resolution global wave

Fig. 2. Mean along-track SWH data from May 2020 to May 2021, compiled from multiple satellite missions: Jason-3, Sentinel-

3A, Sentinel-3B, SARAL/AltiKa, CryoSat-2, CFOSAT, and HaiYang-2B.

Fig. 3. Locations of the National Data Buoy Center (NDBC) buoy stations used for model comparison and validation. The

buoys selected for detailed validation are marked with their identification numbers and represented by red dots.
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model, buoys located in the open ocean were selected

rather than those in coastal areas. The selected buoys,

shown in Fig. 3, were subsampled to match the model

grid.

The validation statistics utilized in this study include

the root mean square error (RMSE) and relative

improvement (RI), both of which are crucial for

evaluating model performance. RMSE measures the

average magnitude of the errors between predicted and

observed values, providing a clear indication of the

accuracy of the model. RI quantifies the improvement

in the model compared with a baseline, reflecting the

relative enhancement achieved. These metrics are

represented by the following Eqs. (11) and (12):

RMSE= (11)

RI (%) = (%), (12)

RI highlights the reduction in RMSE achieved by

the model relative to the baseline, thereby emphasizing

the effectiveness of the model improvements.

3. Results

Fig. 4a illustrates the RMSE of the CTL run compared

with observational data from satellite missions. This

CTL run was conducted without implementing any

data assimilation techniques, serving as a baseline for

assessing the impact of data assimilation in subsequent

experiments. In high-latitude areas, particularly around

60
o
N and 60

o
S, RMSE values are higher, often exceeding

0.8 m. These elevated RMSE values indicate larger

discrepancies between the model outputs and observed

data in these regions. This could be due to the more

dynamic weather patterns and oceanic conditions at

these latitudes. In contrast, the equatorial region,

especially around the central Pacific and Atlantic

Oceans, shows smaller RMSE values (often less than

0.4 m). This suggests that the model performs better in

these regions, with smaller differences between the

modeled and observed data. Coastal areas and mid-

latitudes show a mixed pattern, with RMSE values

generally ranging between 0.4 and 0.6 m, indicating

moderate discrepancies. This spatial distribution of

RMSE is critical for understanding the performance of

the CTL run across different geographic locations, and

can guide further model improvements and calibration

efforts.

Fig. 4b illustrates the difference in RMSE between

the CTL run without data assimilation and the Ex.En0

run with data assimilation. The color scale ranges

from 0.30 to 0.30, where blue indicates regions

where the RMSE of the CTL is lower than that of the

Ex.En0, and red indicates regions where the RMSE of

the CTL is higher. The figure highlights significant

improvements in RMSE, particularly in the high-

latitude regions around 60
o
N and 60

o
S. In these areas,

the application of data assimilation (Ex.En0) substantially

reduced the RMSE, demonstrating a marked enhancement

1

N
----i 1=

N
xi yi– 

2

RMSEref RMSEe– 

RMSEe

----------------------------------------------- 100

Fig. 4. Temporal mean root mean square error (RMSE) of CTL (a), and difference of temporal mean RMSE (b) between CTR

and Ex.En0, (c) between Ex.En0 and Ex.En1, (d) between Ex.En1 and Ex.En2, (e) between Ex.En2 and Ex.En3, and (f) Ex.En3

and Ex.En4. The unit is m.
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in model performance. The RMSE reductions were

also notable in other areas where high initial errors

were present, indicating that data assimilation effectively

mitigated the errors in these regions. Overall, this

emphasizes the beneficial impact of data assimilation

on the quality of the analysis fields, particularly in

regions that initially exhibited high RMSE values. The

reduced RMSE in high-latitude areas and other

regions underscores the importance of incorporating

data assimilation techniques for improving the reliability

of model outputs.

Fig. 5a shows the RI of the Ex.En0 experiment

compared with the CTL run at the buoy stations. In

the high-latitude regions of the North Pacific, the RI

values were notably high, indicating a significant

improvement in the quality of the analyzed fields

owing to data assimilation. High RI values were also

observed in the Atlantic Ocean, particularly in the

waters off the coast of Greenland. Conversely, in the

equatorial regions, RI values were generally lower,

often below 10%. While there are exceptions, this

trend suggests that data assimilation had a less-

pronounced impact in these areas. These patterns are

consistent with the results shown in Fig. 4. As shown

in Fig. 4a, high RMSE values in the CTL run were

prevalent in the high-latitude regions. The application

of data assimilation in Ex.En0 (Fig. 4b) effectively

reduced these errors, leading to the high RI values

observed in Fig. 5a. Conversely, the equatorial

regions, which initially had lower RMSE values in the

CTL experiment, exhibited correspondingly lower RI

values, as the scope for improvement was smaller.

This consistency between Figs. 4 and 5a underscores

the effectiveness of data assimilation in reducing

model errors, particularly in regions with initially high

discrepancies.

As shown in Fig. 6, a comparison of RMSE values

across the seven buoy observation points revealed a

significant reduction in RMSE when data assimilation

techniques were applied in the Ex.En0 experiment

compared with the CTL run. These observation points

were widely distributed, with six located across the

Pacific Ocean and one situated along the east coast of

North America. The RMSE reduction in Ex.En0 was

evident at all observation points, emphasizing that the

application of data assimilation in Ex.En0 significantly

improved the accuracy of the model compared to the

CTL run.

3.1. Ensemble Size

Ex.En0 and Ex.En1 represent experiments with different

ensemble sizes. The results showed that increasing the

ensemble size in Ex.En1 led to slight improvements in

the global domain compared to Ex.En0 (Fig. 4c).

Fig. 5. Relative Improvement (RI) of (a) Ex.En0 against CTR, (b) Ex.En1 against Ex.En0, (c) Ex.En2 against Ex.En1, (d)

Ex.En3 against Ex.En2, and (e) Ex.En4 against Ex.En3. Note that the color scale for (a) is -40 to 40%, while for the other fig-

ures it is -10 to 10%.
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While the degree of improvement is not substantial, it

aligns with the findings in the literature regarding the

benefits of larger ensemble sizes.

As noted by Houtekamer and Mitchell (1998),

increasing the ensemble size generally leads to more

accurate representations of the BEC, which in turn can

improve the quality of the analysis. This is consistent

with our observations, where the difference map

(RMSE(Ex.En0)-RMSE(Ex.En1)) indicates areas of

improvement in various parts of the global ocean,

albeit to a limited extent.

Despite modest global improvements, increasing the

ensemble size has shown positive effects. The RI

metric showed improvement when validated against

buoy data from the western Pacific and Atlantic Oceans

(Fig. 5a). While the overall degree of improvement in

Ex.En1 was modest, the consistent reduction in RMSE

across all seven observation points highlighted the

beneficial impact of a larger ensemble size on

enhancing the quality of the analysis fields.

3.2. Decorrelation Length Scale

The comparison between the two experiments with

different decorrelation length scales is shown in Fig.

4c: Ex.En1 with a 500 km scale and Ex.En2 with a

1000 km scale. The analysis revealed significant

improvements in the RMSE when using a larger

decorrelation length scale across most global regions.

Notably, the improvements were particularly pronounced

in high-latitude regions, where wave energy is higher,

despite a few exceptions, particularly around the

equatorial regions.

The difference map (RMSE(Ex.En1)-RMSE(Ex.En2),

Fig. 4d shows predominantly red areas, indicating

reduced RMSE in Ex.En2. The figure suggests

improvements of up to 0.04 m in RMSE in many

regions. Notably, the Southern Ocean displayed the

most pronounced improvement, with large dark-red

areas indicating RMSE reductions of more than 0.04

m. This substantial improvement in the Southern

Ocean aligns with the findings of Sakov et al. (2012),

who noted that larger spatial scales can be particularly

beneficial in regions with sparse observations and high

variability. The Northwest Pacific also shows notable

improvement, with RMSE reductions of approximately

0.02-0.03 m. This regional enhancement is particularly

relevant for forecasting in the Northwest Pacific and is

consistent with the work of Xie et al. (2011), who

demonstrated the benefits of optimized spatial scales

in regional ocean models. However, it is important to

note that some areas, particularly in the equatorial

Atlantic and parts of the Indian Ocean, show blue

coloration, indicating a slight increase in RMSE

(around 0.01-0.02 m) with the larger decorrelation

length scale. This suggests that the optimal decorrelation

length scale may vary by region, as discussed by Oke

et al. (2007) in their study on the impact of length

scales on ocean data assimilation.

When comparing the RMSE values across the seven

buoy observation points in Fig. 6, it is observed that

while most buoys show slight improvements in RMSE

with the larger decorrelation length scale, the buoy at

location 46070 exhibits a deterioration in performance.

This result aligns with the findings shown in Fig. 5d,

where mixed outcomes were observed depending on

the region. The RI map reveals a complex pattern of

performance changes when increasing the decorrelation

length scale from 500 to 1000 km (Fig. 5c). The

North Atlantic and Eastern Pacific show the most

consistent and significant improvements, with many

locations seeing 50-100% RI, while the Northwest

Pacific also demonstrated notable improvements (25-

75% RI). Interestingly, coastal areas, particularly along

the east coast of North America, show unexpectedly

high RI values (50-100%), suggesting that broader

oceanic influences may be better captured with the

larger scale. The Southern Ocean presents a more

comprehensive view, with high variability ranging

from 100% improvement to some degradation, reflecting

the region’s complex dynamics. The equatorial regions

display mixed results, with both positive and negative

RI values. This variability across different areas under-

scores the challenge of finding a globally optimal

decorrelation length scale, and suggests that region-

specific tuning might be beneficial in data assimilation

systems. These findings highlight the importance of
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considering multiple metrics, such as RMSE and RI,

when evaluating model performance, as they provide

complementary insights into the impacts of parameter

changes.

3.3. Observation Error Covariance

In the Ex.En3 experiment, the observation error was

reduced from 0.5 to 0.1 m compared to Ex.En2. This

change aimed to explore the impact of smaller observation

error covariances on model performance. However, as

illustrated in Figs. 4e, 5d, and 6, this adjustment led to

a general deterioration in performance across most

regions, with the exceptions of the equatorial areas

and the Southern Ocean.

The RMSE difference between Ex.En2 and Ex.En3

is illustrated in Fig. 4e. The map predominantly displays

blue areas, indicating that RMSE has increased in

Ex.En3 compared to Ex.En2 across most global regions.

This is particularly evident in the Northern Hemisphere,

where the performance degradation is more pronounced.

The RMSE of Ex.En3 increased by up to 0.02 m in

several areas, highlighting the adverse impact of

reducing the observation error covariance.

Fig. 5d further corroborates these findings with the

RI map showing mixed results. While the equatorial

regions and parts of the Southern Ocean showed some

positive RI values, most of ocean regions displayed

negative RI values, indicating a decline in model

performance when the observation error covariance

was reduced. Negative RI values were particularly

evident in the North Pacific and Atlantic, where

Ex.En3 underperformed compared to Ex.En2.

Finally, Fig. 6 provides a buoy-specific comparison

of RMSE values, showing that at most buoy locations

the RMSE increased in Ex.En3 relative to Ex.En2.

This performance deterioration was consistent across

the buoys, except in the equatorial and Southern

Ocean regions, where some buoys show slight

improvements. The buoy data thus reinforce the

broader patterns observed in the global maps,

highlighting that reducing the observation error

covariance did not yield the expected improvements in

most regions and instead led to performance

degradation.

3.4. BEC Rescaling

The comparison between Ex.En3 without BEC

rescaling and Ex.En4 with BEC rescaling applied is

shown in Fig. 4f. The RMSE difference map

(RMSE(Ex.En3)-RMSE(Ex.En4)) reveals a distinct

pattern of improvement at higher latitudes in both the

Northern and Southern Hemispheres.

Fig. 6. Comparison of time-averaged RMSE in SWH at ocean buoys in March, 2018. The unit is m.
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In regions poleward of 30
o
 latitude in both hemispheres,

there was a consistent reduction in the RMSE, as

indicated by the predominant red coloration. This

improvement was particularly noticeable in the North

Atlantic, North Pacific, and the Southern Ocean, with

RMSE reductions ranging from 0.02 to 0.04 m. This

pattern suggests that the BEC rescaling technique is

especially effective in capturing the error characteristics

of these regions, which are often characterized by

more dynamic and variable ocean conditions. Conversely,

the equatorial and tropical regions (between 30
o
N and

30
o
S) show a mixed response, with areas of both

slight improvement and degradation. The RMSE

differences in these lower latitude areas are generally

smaller, ranging from 0.02 to 0.02 m, indicating that

the impact of BEC rescaling is less pronounced or

consistent in these regions.

The RI analysis (Fig. 5e) corroborated these findings,

Fig. 7. Comparison of time series plots of SWH simulated from three experimental cases and observed from buoy data from

May 2020 to May 2021 at the seven stations (46072, 46059, 4400050, 40670, 52201, 51209, and 51206) provided by the

NDBC, which were not assimilated.
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demonstrating consistent positive values at higher

latitudes and more variable results in the tropics. This

aligns with the RMSE difference map and further

supports the effectiveness of BEC rescaling in improving

model performance, particularly in high-latitude areas.

The effectiveness of BEC rescaling is further

demonstrated by the RMSE values for Ex.En4, which

show a reduction across all seven buoy observation

points compared to Ex.En3 (Fig. 6). The time series

of SWH for the selected buoys (Fig. 7) also shows

that the Ex.En4 provides a closer analysis to the

observed data compared to the Ex.En0 in the North

Atlantic and North Pacific regions—specifically buoys

46070, 4400050, 46072, and 51206. Remarkably, Ex.En4

not only improved upon Ex.En3 but also achieved the

lowest RMSE values among all five data assimilation

experiments, underscoring the significant impact of

BEC rescaling on enhancing the quality of the

analysis fields.

These results are consistent with the findings of

Penny et al. (2013), who noted that BEC rescaling can

be particularly beneficial in regions with high variability

and complex dynamics, such as those at higher latitudes.

Furthermore, the variable impact in tropical regions

aligns with the observations of Oke et al. (2007) who

discussed the challenges of accurately representing

error covariances in areas with different dynamical

regimes. The distinct improvement at higher latitudes

and the more nuanced impact in tropical regions

underscore the importance of carefully considering

regional differences when applying data assimilation

techniques. As suggested by Sakov et al. (2012), adaptive

approaches to BEC estimation and rescaling may be

necessary to optimize performance across diverse

oceanic environments.

4. Discussion and Conclusions

The results presented in this study emphasize the

substantial impact of data assimilation techniques on

enhancing the accuracy of SWH analysis fields, as

demonstrated across various experiments. The CTL

run, which did not utilize data assimilation, consistently

exhibited higher RMSE values, particularly in high-

latitude regions, indicating significant discrepancies

between the model outputs and observed data. This

underperformance is evident in Fig. 4a, where the

CTL run frequently underestimated the SWH compared

with the observational data, especially in dynamic

regions such as those around 60
o
N and 60

o
S.

The introduction of data assimilation in Ex.En0

resulted in notable improvements, with a marked

reduction in RMSE across most regions, including

high-latitude areas characterized by significant variability.

This enhancement was further supported by the RI

metrics, which showed high values in the North

Pacific and Atlantic Oceans. These findings underscore

the effectiveness of data assimilation in refining model

outputs and improving the accuracy of the analysis

fields, as reflected in the better alignment between

Ex.En0's SWH analysis and the observational data, as

shown in Fig. 7.

The application of a larger ensemble size in Ex.En1

resulted in slight yet consistent improvements over

Ex.En0, particularly in the western Pacific and Atlantic

Oceans. Although the overall improvement was modest,

the consistent reduction in RMSE across all seven

buoy locations, as illustrated in Fig. 6, highlights the

positive impact of increasing the larger ensemble size

on the quality of the analysis fields.

Experiments focusing on adjustments to the decorrelation

length scale (Ex.En2) demonstrated that increasing the

scale from 500 to 1000 km led to significant RMSE

reductions, especially in high-latitude regions where

wave energy is more intense. However, this adjustment

also produced mixed results in equatorial regions,

indicating the need for region-specific tuning to optimize

performance, as evidenced by both Figs. 4c and 5c. In

previous studies applying EnOI, decorrelation length

scales ranging from 400 km to 1600 km have been

used (Liu et al., 2023; Qi and Cao, 2015). In Liu et

al. (2023), it was reported that increasing the

decorrelation length scale up to 1600 km resulted in

performance improvements. This improvement is

attributed to the fact that a larger decorrelation length

scale results in stronger correlations within the same



Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation 361

region. However, setting the decorrelation length scale

to infinity led to a deterioration in performance,

indicating that using an appropriately sized decorrelation

length scale can achieve satisfactory performance

while avoiding excessive computational costs. In this

study, we used decorrelation length scales of 500 and

1000 km, with the experiment using a 1000 km length

scale showing better performance. This finding is

consistent with the results of Liu et al. (2023).

The exploration of the observation error covariance

in Ex.En3, where the observation error was reduced

from 0.5 to 0.1 m, revealed a general deterioration in

performance across most regions, with improvements

observed mainly in the equatorial areas and the Southern

Ocean. This outcome, illustrated in Fig. 4e, suggests

that reducing the observation error covariance may not

always yield better results, and that careful calibration

is essential to avoid unintended degradation of the

analysis fields.

Finally, the application of BEC rescaling in Ex.En4

proved to be the most effective among the experiments.

The rescaling led to a significant reduction in RMSE

across all seven buoy observation points, with Ex.En4

achieving the lowest RMSE values of all the data

assimilation experiments. These improvements were

particularly pronounced in high-latitude regions, where

the dynamic and variable ocean conditions benefited

the most from BEC rescaling, as shown in Figs. 4f,

5e, and 6.

In conclusion, this study demonstrates that although

data assimilation techniques significantly improve the

quality of analysis fields, the selection and tuning of

parameters such as ensemble size, decorrelation length

scale, and observation error covariance are critical for

achieving optimal results. The success of BEC rescaling

in Ex.En4, in particular, highlights its potential as a

powerful tool for enhancing analysis fields in complex

and variable oceanic environments, especially in high-

latitude regions. While the study demonstrates the

potential of data assimilation techniques, the need for

careful calibration and adaptive parameter tuning is

critical. Future research should focus on addressing

these limitations by exploring more adaptive and

region-specific approaches, ensuring that the benefits

of data assimilation are fully realized across diverse

oceanic conditions.
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