The questionnaire survey was conducted on 225 farmers in Gyeonggi-do, Jeollanam-do and Jeollabuk-do. A total of 189 (84%) farmers responded. 72% of the respondents were males, 50.3% were aged 60 or older, and 51.3% had less than 5 years of farming experience. 78.8% of the respondents are pesticide-free, and 44.4% of respondents have less than 0.5 ha of farming scale. 61.4% of the cultivated crops were vegetable crops. The order of seeds and seedlings to buy was tomato (23.3%), cucumber (12.2%) and pepper (10.6%). The cost of purchasing seeds ranged from a minimum of 100,000 won to a maximum of 5 million won. 78.3% of respondents answered that they well-knew or knew about organic seeds. 78.3% of respondents answered that they knew or knew about organic seeds. Of the positive effects of mandatory use of organic seeds, 41.3% of respondents said they would increase confidence in organic certification. However, 41% of respondents who opposed the mandatory use of organic seeds said that "The strengthening of regulations will make organic agriculture more difficult." When the use of organic seeds is mandatory, 43.4% of the respondents favor direct support for the purchase of organic seeds, which should be supported politically by the state. When organic seeds were supplied, the disease resistant seeds (53.4%) was the preferred characteristic of organic seeds. For the optimal price of organic seeds, 38.6% of respondents wanted the same price as the commercialized conventional seed. In this study, the questionnaire was conducted for three major organic farming regions, but many of the respondents were judged to have a legal position on the mandatory use of organic seeds. Therefore, the results of this study can be used as a basic data for reviewing the legislation on the organic seed production and distribution suitable for the situation of Korean organic farming.
최근 암호화폐거래소로 투자자들이 몰리면서 비트코인 가격이 급등락하고 있다. 본 연구의 목적은 딥러닝 모형을 이용하여 비트코인의 가격을 예측하고, 투자전략을 통해 비트코인의 수익성이 있는지를 분석하는 것이다. 비선형성과 장기기억 특성을 보이는 비트코인 가격 예측모형으로는 LSTM을 활용하며, 예측 가격을 입력변수로 하는 이동평균선 교차전략의 수익성을 분석하였다. 2013년부터 2021년까지의 LSTM 예측 가격을 이용한 비트코인 이동평균선 교차전략의 투자 성과는 단순 시장가격을 이용한 이동평균선 교차전략과 벤치마크전략 Buy & Hold 보다 각각 5.5%와 46% 이상의 수익률 개선 효과를 보여주었다. 최근 데이터까지 확장하여 분석한 본 연구의 결과는 기존의 연구들과 마찬가지로 암호화폐 시장의 비효율성(inefficiency)을 지지하고 있으며, 비트코인 투자자들에게는 딥러닝 모형을 이용한 투자전략의 실전 활용 가능성을 보여주었다. 향후 연구에서는 다양한 딥러닝 모형들의 성과 비교를 통해 최적의 예측모형을 개발하고 비트코인 투자전략의 수익성을 개선할 필요가 있다.
This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.
The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.
제3자재원조달 계약의 과정이 1단계 신호발생 게임과 2단계 주인-대리인 게임 등 2단계 게임 모형을 통해 분석된다. 2단계 게임의 해는 역진귀납법을 통해 구해진다. 2단계 게임에서, 에너지절약기업의 최적 노력수준, 에너지 사용자의 최적 보상 체계, 그리고 두 경기자의 보수는 각각의 부분게임에서 도출된다. 이렇게 해서 도출된 각각의 부분게임의 최적해는 서로 비교된다. 그 결과 우리는 만약 에너지절약기업의 수입을 감소하는 비율로 증가시키는 누진적인 판매세와 같은 에너지절약기업의 수입에 대한 제약이 존재한다면, 최적 분배 비율은 선형 보상 체계에서 'I'보다 작은 수준에서 유일하게 결정된다는 것을 알게 되었다. 즉 유일한 균형이 존재한다는 것이다. 부분게임 각각의 경우에 대한 자기충족적인 유일한 균형은 분리균형인 바, 이 균형에서 에너지사용자는 높은 기술수준을 보유하고 있는 에너지절약기업(H형 ESCO)의 에너지진단 제안은 받아들이되, 낮은 기술수준을 보유한 에너지절약기업(L형 ESCO)의 진단제안은 거절한다. L형 ESCO는 제3자 재원조달 시장에서 수익을 창출할 수 없게 된다. 반면, H형 ESCO는 L형과 H형의 진단수수료의 차이만큼 수익을 얻게 된다. 따라서 H형 ESCO의 균형에서의 수익은 자신의 기술수준뿐만 아니라 L형보다 더 빠르게 진보된 기술수준을 통해서 증가하게 된다. 에너지사용자는 어떠한 추가비용을 지출하지도 않으면서 기존 자신의 에너지시스템에서 ESCO가 3자재원조달 임무를 하도록 허용함으로써 일정분의 수익을 얻게 된다.
최근 도심지 고밀화에 따른 공간의 효율적 이용이 요구됨에 따라 대규모의 고층 사무공간이 증가하고 있으며, 이와 함께 주거, 상업, 문화 등 다양한 기능을 밀접하게 연관시킨 고층 복합시설도 점차 늘어가고 있다. 이러한 대형 건설, 프로젝트는 긴 공사기간이 소요되어 공사비 예측이 쉽지 않으며, 막대한 비용이 투입되기 때문에 비용 예측의 중요성이 더욱 증대되고 있다. 이러한 상황에서 최근 극심한 경제변화에 따른 건설자재가격의 변동은 자재비를 포함한 공사비 예측을 어렵게 만드는 주요 원인이다. 따라서 본 연구는 건설자재단가 시계열자료를 활용, 미래의 자재단가 예측을 위한 시계열모델을 구축하고 복잡한 모델 프로세스를 간소화하는 자재별 최적 예측모델 도출시스템을 구축한다. 또한 Building Information Modeling(BIM)의 접근을 통해 자재의 투입시기 및 투입물량을 분석, 시계열모델을 통해 예측한 자재단가 예측 값과 조합함으로써 총 자재비를 포함하는 BIM기반 공사원가 예측 시계열모델을 제시한다. 본 연구는 시계열모델의 하나인 Autoregressive Integrated Moving Average(ARIMA)모델에 대한 예측력 비교를 통해 자재단가 예측을 위한 적합모델을 도출하였다. BIM기반의 원가예측 시계열모델은 자재의 투입시기별 자재단가 변동치를 예측함으로써 급변하는 경제 환경 변화에 대처할 수 있는 도구가 될 것이다.
Purpose: The globalization of the Korean restaurant franchise industry differs from the business performance of enhancing the brand image and customers' intention to revisit depending on the degree of localization marketing. Therefore, it is necessary to consider the extent to which the localization marketing activities of overseas Korean restaurant franchise companies affect the customer's perception. This study aims to investigate the effects of localization marketing (Localized Menu, Localized Price, Localized Service Experience, Localized Promotion, Localized Physical Environment) of Korean restaurant franchise companies on customer revisit intention. Research design, data, and methodology: For this study, 150 questionnaires using local Korean restaurants in Beijing, China, were analyzed using SPSS Ver.21 and AMOS Ver.22. Result: It was confirmed that the localized menu, localized service experience, and localized physical environment all affect the intention to revisit customers. Based on these verification results, if overseas franchises fully recognize localization marketing, which is an important factor for local business success, and establish localization strategies, they can gain an edge in competition with local Korean restaurants or restaurant franchises founded by locals. There may be a higher probability that However, it was found that localization price and localization promotion had no mediating effect of brand image between revisit intention and revisit intention. It was found that it had no effect on the degree of inquiry and had a negative effect. Conclusions: Due to the impact of the COVID-19 pandemic, there have been many changes in the domestic and overseas food service industry over the past two years. Therefore, in future research, it is necessary to study the localization of overseas Korean restaurant franchise companies that are more multidimensionally subdivided. Various measures of customized localization marketing for optimal regional characteristics should be developed and applied to enhance customer revisiting and brand image of Korean restaurant franchise companies entering overseas. In the future, this study will be meaningful data for the establishment of localization marketing (Localized Menu, Localized Price, Localized Service Experience, Localized Promotion, Localized Physical Environment) strategies for Korean restaurant franchise companies that consider overseas expansion or have already entered.
본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.
제조업체와 유통업체의 판매촉진 구사가 증가하면서 이들 사이의 바람직한 판매촉진 비용 분담 방식에 대한 관심도 증가하고 있다. 특히 유통업체 점포를 방문하는 소비자의 비계획구매 요소는 유통업체에게 명시적 잉여를 제공하지만 제조업체에게는 그렇지 않다는 점에서 이를 고려한 판매촉진 비용 분담의 방향 제시가 필요한 것이 현실이다. 문제는 유통업체 방문 소비자의 점포내 비계획구매 요소가 있을 때 제조업체가 어떻게 대응해야 하는지에 대해서는 충분한 설명이 이루어지지 못하고 있다는 점이다. 이러한 문제의식에서 본 연구에서는 유통업체 점포내 비계획구매 요소가 있을 때 제조업체가 구체적으로 공동 판매촉진 행동을 어떻게 전개해야 하는지 조명하고 있다. 본 연구의 주요결과는 다음과 같다: (1) 유통업체 점포 방문 소비자의 비계획구매 수준이 증가할수록 채널 전체의 판매촉진 수준은 높아지고, 제조업체의 비용 분담액도 커진다. (2) 유통업체 점포 방문 소비자의 비계획구매 수준이 증가할수록 채널 전체 판매촉진 비용 중에서 제조업체의 판매촉진 비용 분담 비중은 낮아지고, 유통업체의 판매촉진 비용 분담 비중은 높아진다. (3) 제조업체 이익은 유통업체 점포 방문 소비자의 비계획구매 수준인 b의 증가함수이다. (4) 유통업체가 소비자의 비계획구매 대상 제품을 조달하는데 소요되는 비용 수준이 증가할수록 유통업체 점포 방문 소비자의 비계획구매 수준 증가에 따른 채널 전체의 판매촉진 수준 증가 정도, 제조업체의 판매촉진 비용 분담액 증가 정도, 유통업체의 판매촉진 비용 분담 비중 증가 정도, 제조업체 이윤 증가 정도가 낮아진다.
본 논문에서는 여러가지 상이한 메세지를 전송하는 정보통신 네트워크의 효율적인 해법을 개발하였다. 이 문제는 네트워크 이론에서의 전형적인 다품종 네트워크로의 전환이 가능하다. 이러한 문제는 문제의 크기에 따라 계산의 복잡도가 지수적으로 증가하는 대표적인 NP-완전문제이다. 본 논문에서 개발된 해법은 전통적인 라그랑지 이완법을 보완한 것으로 다음과 같이 구성된다. 우선 우수한 초기 실현가능해(good initial feasible solution)를 얻을 수 있는 휴리스틱 방법을 개발하고 초기 실현가능해가 얻어지면 이를 이용하여 초기 쌍대변수(이완된 제약식에 붙게되는 라그랑지 승수)를 추정한다. 대개의 경우 쌍대 변수를 임의로 0으로 설정하고 해법을 수행하는데, 이 경우 쌍대 최적해와의 차이가 많이 나게되므로 비효율이 발생할 수 있다. 쌍대 최적해를 얻은 후 원문제의 실현가능조건을 위배하는 경우에는 재할당 방법(re-allocation method)를 통해 원문제의 실현가능조건을 충족하도록 한다. 해법의 성능(효율성) 테스트 결과 저자들이 개발한 해법이 수행속도 면에서 상업용 팩키지와 기존의 효율적인 해법들에 비하여 매우 우수하다는 결과를 얻을 수 있었다. 또한 본 해법은 최적해를 보장하지 않지만 최적해와의 차이가 평균 2% 미만의 근사 최적해를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.