• Title/Summary/Keyword: Optimal Power Flow(OPF)

Search Result 103, Processing Time 0.492 seconds

Non-Interior Point Optimal Power Flow Algorithm for Sectional Distribution System Operation (영역별 배전계통 운용을 위한 Non-Interior Point OPF 알고리즘)

  • Lee, S.S.;Kim, D.H.;Kim, M.K.;Lee, H.C.;Lee, S.K.;Park, J.K.;Moon, S.I.;Yoon, Y.T.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.567-568
    • /
    • 2007
  • 본 논문에서는 구역별 배전계통운영을 위하여 Non-interior point 배전용 최적조류계산(Distribution non-interior point optimal power flow: NIPDOPF) 알고리즘을 소개한다. NIPDOPF 알고리즘은 향후 지역이나 구역으로 분산전원이 도입될 경우 이를 대비한 영역별 최적조류계산 알고리즘으로 이용할 수 있다.

  • PDF

Application of Modified Particle Swarm Optimization algorithm into OPF (A Modified Particle Swarm Optimization 기법을 이용한 추적조류계산 알고리즘)

  • Kim, Young-Yong;Kim, Jong-Yul;Jang, Se-Hwan;Lee, Haw-Seok;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.127-129
    • /
    • 2007
  • 최적조류계산(Optimal Power Flow:OPF)은 전력계통에서 여러 가지 제약 조건을 만족하면서 경제적이고 안전하게 계통을 운영하기 위한 기법이다. 종래의 계산방법에는 비선형 계획법, 선형계획법 같은 수치해석적인 방법을 사용하였다. 그러나, 이러한 방법들은 전역 최저해를 구하기 위해서는 목적함수가 convex해야 한다. 또한, 계통 규모가 클 경우, 최적해 수렴이 안 되거나 수렴이 되더라도 시간이 많이 걸리는 단점이 있다. 최근에는 이러한 문제를 극복하고자 여러 가지 진화연산기법들이 최석조류계산 문제에 적용되고 있다. 본 논문에서 최근에 등장한 PSO알고리즘을 수정한 MPSO알고리즘은 이용한 최적조류계산 기법을 소개하고, 제안한 방법의 유용성을 보이기 위하여 IEEE 30,118 모선 계통의 최적 조류계산 문제에 적용하였다.

  • PDF

A Study on the Constrained Dispatch Scheduling Using Affine Scaling Interior Point Methdod (Affine Scaling Interior Point Method를 이용한 제약급전계획에 관한 연구)

  • Kim, Kyung-Min;Han, Seok-Man;Kim, Kang-Won;Park, Jung-Sung;Chung, Koo-Hyung;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.858-860
    • /
    • 2005
  • This paper presents an Optimal Power Flow (OPF) algorithm using Interior Point Method (IPM) to swiftly and precisely perform the five minute dispatch. This newly suggested methodology is based on Affine Scailing Interior Point Method (AS IPM), which is favorable for large-scale problems involving many constraints. It is also eligible for OPF problems in order to improve the calculation speed and the preciseness of its resultant solutions. Lastly, this paper provides a relevant case study to confirm the efficiency of the proposed methodology.

  • PDF

A Study on the Optimal Power Flow Solution (최적 전력 조류 해법에 관한 연구)

  • You, Seok-Koo;Min, Pyoung-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.176-179
    • /
    • 1989
  • Newton's OPF algorithm, for each iteration, solves with second order approximation of Lagraqngian function and sparse matrix technique. When load model is applied to this technique, load voltages have tendency to be fixed at lower limit. It makes the solution inadequte. In this paper, reference bus voltage specification technique suggested to make adequate load voltage. This method is verified useful 6-bus Ward-Hale sample system.

  • PDF

A Study on the Monitoring of Market Power using Contingent Transmission Rights in Competitive Electricity Markets (경쟁적 전력시장에서 Contingent Transmission Rights을 이용한 지역적 시장지배력 감시방안)

  • Park, Jung-Sung;Han, Seok-Man;Kim, Bal-Ho
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.256-276
    • /
    • 2006
  • Transmission congestion is one of the key factors to local market power in competitive electricity markets. Financial transmission rights provide the financia] protection to their holders by paying back the congestion rent. A variety researches have shown that the existing trading mechanisms on transmission right can exacerbate market power. This paper proposes an alternative methodology in mitigating the local market power using the Contingent Transmission Rights on the locational marginal pricing scheme. The proposed methodology was demonstrated with the Optimal Power Flow.

A Study on the Mitigation pf Market Power using Contingent Transmission Rights in Competitive Electricity Markets (경쟁적 전력시장에서 Contingent Transmission Right을 이용한 지역적 시장지배력 완화방안)

  • Park, J.S.;Kim, K.M.;Chung, K.H.;Han, S.M.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.159-161
    • /
    • 2005
  • Transmission congestion is one of the key factors to local market power in competitive electricity markets. Financial transmission rights provide the financial protection to their holders by paying back the congestion cost. However, the market participants who have market power can exacerbate their market power. Due to the exacerbated market power, this paper analyzes the mitigation of local market power using Contingent transmission rights on the market price. Contingent transmission rights provide not only the financial protection but also regulative penalty. The proposed methodology was demonstrated with the Optimal Power Flow(OPF).

  • PDF

A Study on the Market Power and Transmission Rights in Electricity (송전권이 지역적 시장지배력에 미치는 영향 고찰)

  • Park, J.S.;Han, S.M.;Kim, K.M.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.855-857
    • /
    • 2005
  • Transmission congestion is one of the Key factor to local market power in competitive electricity markets. Financial transmission rights provide the financial protection to their holders by paying back the congestion cost. However, the market participants who have market power can exacerbate their market power. This paper analyzes the effect of exercising local market power with the rights on the market price. The proposed methodology was demonstrated with the Optimal Power Flow(OPF). Case study is fulfilled by GAMS simulation. The simulation are condusted in case of Nodal Pricing.

  • PDF

A Study on the Mitigation of Market Power using Contingent Transmission Rights in Competitive Electricity Markets (경쟁적 전력시장에서 송전권을 이용한 지역적 시장지배력 완화방안)

  • Park, Jung-Sung;Chung, Kooh-Hyung;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.268-276
    • /
    • 2007
  • Transmission congestion is one of the key factors to local market power in competitive electricity markets. Financial transmission rights provide the financial protection to their holders by paying back the congestion rent. A variety researches have shown that the existing trading mechanisms on transmission right can exacerbate market power. This paper proposes an alternative methodology in mitigating the local market power using the Contingent Transmission Rights on the locational marginal pricing scheme. The proposed methodology was demonstrated with the Optimal Power Flow.

Available Transfer Capability Evaluation Considering CO2 Emissions Using Multi-Objective Particle Swarm Optimization (CO2 배출량을 고려한 가용송전용량 계산에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Mun-Kyeom;Lyu, Jae-Kun;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1017-1024
    • /
    • 2010
  • Under the Kyoto Protocol many countries have been requested to participate in emissions trading with the assigned $CO_2$ emissions. In this environment, it is inevitable to change the system and market operation in deregulated power systems, and then ensuring safety margin is becoming more important for balancing system security, economy and $CO_2$ emissions. Nowadays, available transfer capability (ATC) is a key index of the remaining capability of a transmission system for future transactions. This paper presents a novel approach to the ATC evaluation with $CO_2$ emissions using multi-objective particle swarm optimization (MOPSO) technique. This technique evolves a multi-objective version of PSO by proposing redefinition of global best and local best individuals in multi-objective optimization domain. The optimal power flow (OPF) method using MOPSO is suggested to solve multi-objective functions including fuel cost and $CO_2$ emissions simultaneously. To show its efficiency and effectiveness, the results of the proposed method is comprehensively realized by a comparison with the ATC which is not including $CO_2$ emissions for the IEEE 30-bus system, and is found to be quite promising.

Security Constrained Optimal Power Flow Incorporating Load Curtailment Schedule (부하차단량을 고려한 상정사고 절약 최적조류계산 알고리즘 개발)

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.801-803
    • /
    • 2005
  • Fundamentally, success of the competitive electricity market is dependent on efficient market design. However, since electricity incorporates various physical constraints as other commodities, the resource assignment (i.e., dispatch scheduling) is also one of requisites for the successful operation of electricity market. Therefore, efficient dispatch scheduling is an important issue to succeed in the deregulated electricity market and the efficiency of this electricity market may be considerably increased by systematic studies on dispatch scheduling algorithm and corresponding constraints, especially system security. Moreover, contrary to traditional vertically-integrated electric power industry condition, since various decision-makings in deregulated electricity market are directly connected with market participants' benefits, only rational dispatch scheduling algorithm can convince these participants. Therefore, it can provide a basis of grievance prevention. In this paper, we propose an algorithm for security constrained dispatch scheduling with respect to load curtailment. Proposed algorithm decomposes the dispatch problem into a master problem corresponding to basecase optimal power flow (OPF) and several subproblems corresponding a series of contingencies using two-stage optimization technique.

  • PDF