• 제목/요약/키워드: Optimal Policies

검색결과 397건 처리시간 0.021초

민감도 분석을 이용한 소프트웨어 최적방출시기에 관한 연구 (The Study of Software Optimal Release Using Sensitivity Analysis)

  • 신현철
    • 융합보안논문지
    • /
    • 제8권4호
    • /
    • pp.121-126
    • /
    • 2008
  • 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 일은 아주 실제적이고 흥미 있는 일이 된다. 이러한 문제를 소프트웨어 최적 방출시기라고 한다. 본 연구에서는 이러한 방출문제에 대하여 연구되었다. 수명분포는 감마족 분포에서 대표적인 어랑 문포 모형을 이용한 최적 방출시기에 관한 문제를 다루었다. 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 최적 소프트웨어 방출 정책에 대하여 논의 되었고 민감도 분석을 이용하여 효율적 최적 방출시기가 논의되었다.

  • PDF

중첩 NHPP 모형에 근거한 소프트웨어 최적방출시기에 관한 연구 (A Study of Software Optimal Release Time for Based on Superposition NHPP Model)

  • 김희철
    • 디지털산업정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.9-17
    • /
    • 2010
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The applied model of release time exploited infinite non-homogeneous Poisson process. This infinite non-homogeneous Poisson process is a model which reflects the possibility of introducing new faults when correcting or modifying the software. The failure life-cycle distribution used superposition which has various intensity, if the system is complicated. Thus, software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement becomes an optimal release policies. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, estimated software optimal release time. Through this study, in terms of superposition model and simply model, the optimal time to using superposition model release the software developer to determine how much could count will help.

혼합 와이블 NHPP 모형에 근거한 소프트웨어 최적방출시기에 관한 연구 (A Study on Optimal Release Time for Software Systems based on Mixture Weibull NHPP Model)

  • 이상식;김희철
    • 디지털산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.183-191
    • /
    • 2010
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The applied model of release time exploited infinite non-homogeneous Poisson process. This infinite non-homogeneous Poisson process is a model which reflects the possibility of introducing new faults when correcting or modifying the software. The failure life-cycle distribution used mixture which has various intensity, if the system is complicated. Thus, software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement becomes an optimal release policies. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, estimated software optimal release time.

일반화 감마분포에 근거한 소프트웨어 최적방출시기에 관한 비교 연구 (A Study on Optimal Release Time for Software Systems based on Generalized Gamma Distribution)

  • 김재욱;김희철
    • 디지털산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.55-67
    • /
    • 2010
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The applied model of release time exploited infinite non-homogeneous Poisson process. This infinite non-homogeneous Poisson process is a model which reflects the possibility of introducing new faults when correcting or modifying the software. The failure life-cycle distribution used generalized gamma type distribution which has the efficient various property because of various shape and scale parameter. Thus, software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement becomes an optimal release policies. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, estimated software optimal release time.

반-로지스틱과 로그로지스틱 NHPP 분포 특성을 이용한 소프트웨어 최적방출시기 비교 연구 (The Comparative Study of Software Optimal Release Time of Finite NHPP Model Considering Half-Logistic and Log-logistic Distribution Property)

  • 김희철
    • 디지털산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, make a study decision problem called an optimal release policies after testing a software system in development phase and transfer it to the user. In the course of correcting or modifying the software, finite failure non-homogeneous Poisson process model, presented and was proposed release policies of the life distribution, half-logistic and log-logistic distributions model which used to an area of reliability because of various shape and scale parameter. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. In a numerical example, the parameter estimation using maximum likelihood estimation of failure time data make out, and software optimal release time was estimated.

Optimal Preventive Maintenance Policy Based on Aperiodic Model

  • Kim, Hee-Soo;Yum, Joon-Keun;Park, Dong-Ho
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 추계학술대회
    • /
    • pp.335-342
    • /
    • 2000
  • Preventive maintenance(PM) is an action taken on a repairable system while it is still operating, which needs to be carried out in order to keep the system at the desired level of successful operation. The PM improves the reliability of the system by predicting the possible failures and thereby preventing such failures from its occurrence. In this paper, we develop the optimal preventive maintenance policies based on the aperiodic PM model. We investigate an aperiodic preventive maintenance policy and propose several optimal PM policies which minimize the expected cost over an infinite time span. Park, Jung and Yum(2000) determine the optimal period and the optimal number of PMs based on Canfield's(1986) periodic model. Our techniques to derive the optimal preventive maintenance policies based on our aperiodic PM model is similar to those in Park, Jung and Yum(2000), which can be considered as the special case of our results.

  • PDF

On Multipurpose Replacement Policies for the General Failure Model

  • Cha, Ji-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.393-403
    • /
    • 2003
  • In this paper, various replacement policies for the general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. In this model, when the unit fails at its age t, Type I failure occurs with probability 1-p(t) and Type II failure occurs with probability p(t), $0{\leq}p(t){\leq}1$. Under the model, optimal replacement policies for the long-run average cost rate and the limiting efficiency are considered. Also taking the cost and the efficiency into consideration at the same time, the properties of the optimal policies under the Cost-Priority-Criterion and the Efficiency-Priority-Criterion are obtained.

  • PDF

다단계 생산시스템에서 재작업정책의 비교분석 (Comparative Analysis of Rework Policies in Multistage Production System)

  • 신재선;한주윤;정봉주
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.29-41
    • /
    • 2006
  • As the quality and environmental problems become one of the most concerned issues of company, the rework policy needs to be efficiently designed and implemented to sustain the company's competitiveness. This paper examines three basic rework policies in multi-stage production systems and analyzes them in terms of costs of setup, production, inspection, and inventory. For analyzing the performance of the rework policies, we propose mathematical models which can compute total production cost and determine the optimal production batch size to minimize the total production cost. The rework policies are classified by the number and location of inspection stages. Using the mathematical models, we could analyze the performances of rework policies and suggest the optimal rework policy according to each manufacturing environment. The analyses show that the proposed model can be used to analytically evaluate and choose the rework policies.

임의 저장 방식과 급별 저장 방식하에서의 최적 저장 규모 (Optimal Storage Capacity under Random Storage Assignment and Class-based Assignment Storage Policies)

  • 이문규
    • 대한산업공학회지
    • /
    • 제25권2호
    • /
    • pp.274-281
    • /
    • 1999
  • In this paper, we determine the required storage capacity of a unit-load automated storage/retrieval system(AS/RS) under random storage assignment(RAN) and n-class turnover-based storage assignment(CN) policies. For each of the storage policies, an analytic model to determine the optimal storage capacity of the AS/RS is formulated so that the total cost related to storage space and space shortage is minimized while satisfying a desired service level. A closed form of optimal solutions for the RAN policy is derived from the model. For the CN policy, an optimal storage capacity is shown to be determined by applying the existing iterative search algorithm developed for the full turnover-based storage(FULL) policy. Finally, an application of the approach to the standard economic-order-quantity inventory model is provided.

  • PDF

기능저하 시스템에서의 최적 교체 정책 (On Optimal Replacement Policies for a Deteriorating System)

  • Ji Hwan Chan
    • 품질경영학회지
    • /
    • 제30권4호
    • /
    • pp.94-105
    • /
    • 2002
  • In this paper, replacement problems for a deteriorating system are considered. In the system under consideration, the successive lifetimes after repair become shorter and shorter, while the consecutive repair times become longer and longer. More specifically, the lifetimes of the system form a nonhomogeneous Poisson process, whereas the consecutive repair times constitute a stochastically increasing geometric process. Optimal replacement policies for the long-run average cost rate and the steady state availability are considered. Also taking the cost and the availability into consideration at the same time, the properties of optimal policies under the Cost Priority Policy and the Availability Priority Policy are obtained.