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In this paper, we derermine the required storage capacity of a unit-load automated storage/retrieval

system(AS/RS) under random storage assignment(RAN) and #-class rurnover-based storage assign-

ment(CN) policies. For each of the storage policies, an analytic model to determine the oprimal storage

capacity of the AS/RS is formulated so that the total cost related to storage space and space shortage is

minimized while satisfying a desired setvice level. A closed form of optimal solutions for the RAN policy

is derived from the model. For the CN policy, an optimal storage capacity is shown to be determined by
applying the existing iterative search algorithm developed for the full turnover-based storage(FULL)
pelicy. Finally, an application of the approach to the standard economic-order-quantity inventory maodel

is provided.

1. Introduction

In this papet, we consider a design issue of a
unit-load AS/RS. The required storage capacity for
the warchousing system is defined as the amount of
storage space needed to accommodate the materials
to be stored. The major factors that affect storage
sizing include system throughpue (alternatively, the
reciprocal of the expected time taken to perform an
operation) and storage assignment policy. A larger
system in storage space will have a lower throughput
than a smaller size system if the storage and retrieval
behaviors remain the same. Thus, trade-offs between
throughpur and storage capacity should be consider-
ed while designing AS/RSs.

Three kinds of storage assignment policies address-
ed usually in the literature are RAN, FULL, and CN.
Assuming an identical storage size for the three poli-
cies, Hausman, Schwarz et 2/(1976, 1977) derive
analytic expressions for the system through- put, and
show that significant improvements in throughput
are obtainable when FULL and CN are used. An
extension to Hausman er /s study is reported by Ko

and Hwang(1992) which takes account of the stor-
age space required for each policy. However, in their
study, the storage space is determined without con-
sidering the costs involved. Rosenblatt and Roll
(1984) presented a search procedure for finding the
optimal storage design considering capital invest-
ment, space shortage cost, and costs associated with
storage policies. Later, for a warehouse in a stochas-
tic environment, the major elements that affect the
required storage capacity were examined using a
simulation model by the same authors(Rosenblatt
and Roll, 1988). Frandis ez #/.(1992) presented math-
ematical models of determining the storage capaci-
ties under different storage policies. Other related
research on storage sizing includes those done by
Mullen(1981) and Bafna(1983) where general proce-
dures that can be used in practice are suggested.

Recently, Lee(1998) presented an approach for
determining the required storage capacity under
FULL. In the approach, an optimization model is
formulated to minimize the total cost relared to
storage space and space shortage while satisfying a
desired service level.

In this paper, Lee’s approach is extended to deal
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with the storage policies, RAN and CN. Ao appli-
cation of such an exrension to the economic otder
quanticy{(EOKQ) inventory system is presented.

2. Models for Determining Storage
Capacity

If the storage requirement is greater than the storage
capacity, a space shortage occurs. Here, we define
the shortage probability as the probability of space
shortage occurring in the warehouse system. In case
of space shortage, the excess space requirement can
be mer via leased storage space. In this paper, we
consider the problem of determining the storage
capacity in which the sum of the cost for owning
space and that for contracting shortage space is
minimized without exceeding a given shortage
probability, @o(0=< @o=<1).

Lert X and X; , 7/=1,"-+, #, be tandom variables
which represent the aggregate inventory level of the
overall systemn and the inventory level of item i,
respectively. Here, we consider che case whete every
X, follows a uniform distribution as follows :

X,' — U(a,-, 5’,‘), f:l,“‘,ﬂ.

One example of such a case is the system in which
the standard EOQ model with 4 being zero is
applied to all items stored. The storage capacity at
the 1- @ service level, §{ @), satisfies the following
inequality:

PAX <S(a)) =1-a

Throughout this paper, unless otherwise stated,
iterns are numbered in a decreasing order of 4; values.
X is then expressed as a function of Xis and its
storage level is obviously influenced by the storage
assignment policy used.

We now present a model for determining the
economic storage capacity which is latge enough to
accommodate the incoming full pallet loads of items
with a probability being not less than (1- @ o).

2.1 Storage Capacity under RAN

Under RAN, a pallet load of any item is equally
likely to be stored in any storage location. Hence,
the required storage capacity will be equal to the
maximum of aggtegate inventory level for all items.

However, in real situations, due to the dynamic
nature of the replenishment process and retrieval
operation of items, it is extremely difficult to exacdy
perdict the aggregate inventory level. Rosenblatt and
Roli(1988) consider the warehousing system oper-
ated under a (g, Q) inventory policy where ¢ and Q
are the reorder point and the order quantity, respec-
tively. Using a simulation mode! they show that the
capacity required for a service level of 95% is within
1.15 times the average aggregate level.
By the definition of X,

X= 121}{*

and now let
Z=(X-w/o

where
;‘i= ,Z_l(&,"f’ b2 and,

3=( gl(b,— 2 D,

If » is sufficiently large, Z follows approximately
the standard normal distribution, N(O, 1), by the
Central Limit Theorem. Thus, for a given probability

@ o, the storage capacity under RAN can be repre-
sented by a function of the unknown variable, @:

Sgan( )= ?H‘ Za?)'

where @< @ and z,is determined by Pr{Z >z,)=a
for 0< @ <1. Throughout this paper, we consider
that case where @ <0.5, which may be true for
most of warehouses in practice. Since a space short-
age occurs when the required inventory level exceeds
the scorage capacity, the expected amount of space
shortage per unit time will be

Epax (@)
= proportion of time in which space shortage
occurs* expected amount of shortage space
when shortage occurs + proportion of time in
which space shortage do not occur® 0

=a'BE( X~ (z+z, X2+ z,0+(1— )

= [ TX= Gt 2,3/V2m3]
exp(—{(X— '}})2/2?)09{

=5 [(a=z)exp(~ /) V2aldz

= o exp(— 24D /V2r— az,)].
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Let A= discount present worth cost per unit
storage space owned and operated for a
unit period of time and

A 2= discount present worth cost per unit
space leased ot per unit of space shortage
for a unit period of time.

Then the total cost per unit time will be

TC gan{a) = A;S ran(@) + A, E gani @)
= L 2+2,0) + 2,01 a)
where
A @) =exp(—25/2)] (20— az,.

Now we want to determine the optimum storage
capacity under RAN which minimizes the total cost
at the service level of @ o. The problem can be stated
a5

(P1) Minimize A,(z+ 2,9 + 4,61 a)

subject to

PrX < Sran( @) = -0 (D

0= g =<1 (2)
Since,

Pr(X<Span{@) =Pr(X<p+z,00=1—a,
the constraints (1) and (2) reduce to 0= g =< g,.
Therefore, (P1) can be simply rewritten as an uncon-
strained optimization problem:

0=a =0
Mt z,0)+ 4,07 a)

Minimize

Theorem 1.

z, and #{ @) are convex over 0 << ¢ <0.5.
Proof,
Let

¢(2) = exp(—24/2)/ 2m)*",
wO= [, H2dz=a.

since ¢= @), the first and second detivatives of z,
will be respectively

&=z, and

2y= dz,lde= dé/da= (d(&)]dO) !

= —1/(2,)<0 3)
and
z,= d(—1/$(2))/ de=¢ (2,)2./$*(2,)
= 2,/¢%z,)>0 (4)
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for 0= @ <0.5. Consequently z,, is convex,
Next consider the convexity of A @). Using (3),
(4), and #(a) = ¢(z) — az,, we obtain
r(@)= dr@)da= ¢ (2)2,— z,— ez,
= _zaé(za)(_ 1/@(20)) — &gz,
= —az,=>{
and

r (@y=dr (@)/da=—z,— az,— H o)/ $%(2,).

Since the amount of space shortage (@) =0 for 0
=< a =1, /(@)= 0 and hence r (@) is convex. This
completes the proof.

It is evident from Theorem 1 that che value of @
which minimizes TCran{ @ ) can be found by solving
the equation

d1C RAN( a) _
ThUS, da

dTC ganla)
da

0

= A0z,+ A, 07 (a)

= 3(/12(2’""/11)/?5(2&) =0 )

Solving the equation (3) for a gives ¢ = A/ A2
Therefore, considering the upper bound of ¢ the
optimal solution of (P1), say, @ ran™ is given by

granF=min{ A, @¢) whete A=A/ A2
corresponding minimurmn storage capacity will be

The

/.[1(?!"‘ & R-'\n'/{}) + /12?77'( a RA]\'*)

2.2 Storage Capacity under CN

2.2.1 Mathematical Model

In this section, we present a model for the class-
based storage policy which appears to be more prac-
tical than RAN. Under this policy, items and storage
locations are jointly partitioned into a small number
of classes based on item turnover distributions and
travel times taken by the §/R machine, respectively.
Within any class, RAN is assumed to the applied to
assign items to storage locations. Suppose that »
items are divided into N classes such that class j
consists of items &.1+1, &1 +2,---, &, j=1, -, N
where k=0, £y=n, and N<n.

Denoting by @ the shortage probability of class 7,
the storage capacity for each class can be determined
by the same technique used for RAN. Hence, the
storage capacity for CN will be

Sen(a)= gl S'enl@)
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= 2 atB)2+ Bas
where 6;=( £=g+l

Using the similar approach to the one presented in
the previous section, we obtain the space shortage for
CN as follows:

W12 and wi= b,— a;

E ox(@)= 3, alexn( — 2,22/ 20"~ agz,).

Thus, the total cost becomes
TC on(a)= 43S owl(@) + A, E o)

= /11( Zl(a;—i- b;)/2+ i}]za}.a)

+ Ay ﬁ G/(exp( — 2,2 /DD e = az,)

= A i(a + b2+ 4, f ol(d—a)z, (g
+exp( —z, ‘-’-/2)/(2@”2]

Since we want to minimize the total cost such that
overall shortage probability should not exceed «,
the problem, after eliminating the constant terms in
(6), can be stated as follows:

(P2) Minimize
g ol (A= a)zs+ exp( — 2,7 /2)/ (2D

subject to

ﬁ(l_ﬂ‘j)zl‘_&‘g
=1

0<a<u,, Vi
where #, = a common upper bound of the
shortage probabilities.

Notice that if we let 7 =-In{1- @), since 7,= -z1_4,
the variable term in the objective funcrion of (P2) will be

(A— Dz,+ exp(—2%/2)/ Qm)
=(1—e "=z -+ exp(—25-/2)/ 2D,

The following theorem gives a property of the
above expression.

Theorem 2.
Let
g)=(1~&"— Dz +exp(—24-/2)] 2n)'".

Then g( 7) si convex over 0= 1 ;<-In0.5.
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Proof
We decompose the function into two distinctive
terms:
f=2a(D+2{(0)
where

gl)=—2z - and

g()=(1—e¢ Nz Fexp(— zze-:/2)/(2:'r)l“*2.

Now, consider the convexity of g;( ) first. The
first and second derivatives of gl{ 7 ) with respect to
r will be
__Qg_l__ aza da

ar  da ar and
g _ 0%z, (ﬁ)z 3z, 3%
37 da° \ or da 9

From the proof of Theorem 1, we know that

0z

a—gz—l/qﬁ(za)(ﬂ and
2 _ 1820,
da’
Since da =g ¢ and 8’g =—g'F
ar o ’
g e
5 <0 and =5->0.

Consequently, g1( 7 ) is convex.
Next, by definition ga( 7 )= @ ). Thus, the first
and second derivatives of go( 7 ) will be

8

égrz Mafl aa—(a’/sﬁ(z MNe >0, and
I8 _ ") (2)"y-orka) g
aTQ a 2 af aa az_Q

respectively. Through the proof of Theorem 1, we
show that

J—)- = g/$(z,) and Jaazgl =Ha)/ b (2,).
Therefore,

32g2
it

7‘(6.") —2:_ 14 e 7
¢ (Z ) QS(ZG)

e TrHaye "—ad(z))/¢%(2,). )

Substituting ¢ © =1- @ into Eq. (7) yields
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Table 1. Evaluation of R{&}
o 0.0 0.05 0.1 0.15 0.2 0.25 0.3 .35 0.4 0.45 0.5
R(a) 0 0.069 | 0.108 | 0.127 | 0.132 | 0,126 | ¢.111 | 0.089 | 0.062 | 0.032 0

S8 (1l (1—ara) - :
oz -« (@) — ad(2,)1/$92,).

Now, we also let R(a) =(1— a)a)—ad(z,).
‘Then, obviously the [imits of R( @) ate

laig_&[(l—a YHa) — ad(2,)]
= ‘}jg.ps[(l—a @) —adlz,)]=0.

It seems difficult to show analytically that R( ) is
nonnegative for 0<< @ <0.5. However, since R( @) 1s
a simple function of one variable @, it is very easy to
evaluate the function numerically. The numerical
results given in <Table 1> show that R( @) >0 for
0 < @ <0.5. Accordingly,

d zgz
Y >0

and thus g 7) are convex. As a result, g{ ) is

convex over 0< 7;<-In 0.5.

Following Theorem 2, we can rewrite the problem
(P2) as a separable convex program:

(P3) Minimize ﬁ: o, g7}
=~
subject to

Z‘T}'S - ]Il(]. - a[))
OS Tjg U,
where w,=— In{l— u,)

2.2.2 A Sesarch Procedure for Optimal Solutions

Recently, Lee(1998) suggested a search procedure
which generates optimal solutions for the following
nonlinear program:

(P4) Minimize Z= Zl cfxp (8)
subject to
pIPIS ©)
0<x,<wy, Vi

where ¢ (=4, 1<j), 1 and r; (r; 25;) are positive
constants and flx;) is a nonnegative convex function
of x; over 0 <x; <max(xp, 2) whose minimum lies at
x=x0>0, V.

Also, f'(x)is assumed to be nonpositive for 0 <x; <xy.

The search procedure which is based on the
Fibonacci search method(Jacoby, Kowalik and Pizzo,
1972} is outlined in the following.

Step 0: <Problem Type Check>

If (> <min(xo, 71/n)), then x; =r, V7 and stop. If
(xo <r/n and r»), then %, =xo V7 and stop. Other-
wise, proceed to step 1.

Step 1: <Initialization>
Let F; be the j-th Fibonnacci number which is
given by
F=[((1+V5)/2)"" = (1-V5)/2)" 1],
=0,1,2,
where {x] means the largest integer which i1s not
greater than x, Denote i, and g, the initial
upper and lower bounds of the Lagrange mulciplier
for the first constraint (9), z, which are respectively
defined as

ph= erf (0},
= cf (wy) if =1,
=0, otherwise.

Let ] be the smallest integer satisfying Fjz= (ul— 1)/
where ¢ is a required accuracy of the solution.

Step 2: <Initial Solution>
Find the following interior points

ﬂ{: (F]—Z/Fj)(#ic_ ,UD +ﬂ}; and
ph= (Fp JF (e, — py) + 3.

Determine the row vector

?’};= (?’lpl(#,\la), R }’},,;(ﬂ_lo)), p=1, 2 where
7 (el =min[max©, /" eyl cd). v,
=1,

(10)

n
Set the iteration index, /=1 and go to step 4.

Step 3: <Iteration j>
Set
= (Froyo f Fro M= o+ th
and {for Case 2 and Case 3)/or (for Case 1)
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F‘é: (F]—j[F]-E-l—f)(#i_#'D_{'#i.

The definition of each case is given in Step 4.
Using equation (10), find ¥} and/or ¥}, with
u= i, p=1,2, respectively.

Step 4: <Evaluation>

Case 1)

If 2 ) <r; and Z:l:é,(uébn, then set

+l_ 3 r+1 ] i+1 ;

=, pg =, ¢y =
or |

i+ i+l _ g +1 i

it =l 4 uh, My =
Case 2)

If 29’1,(#1)>r1 and 2 7&;(#2)>r1 then set

1 T
p " =p] and #ﬁ = {1}

Case 3)

If 2 7Lu}) <#y and 21?'§g(u§)< 7y then set

+l i+ 1 2
2=, and gyt = 4

Step 5: <Termination Test>

If #J+1__,uf*'l£ £,
g == 2,

then set

compute the optimum ¥ *( 2 *), and stop;
Otherwise, set =741 and go to step 3.

Note that the above general procedure guarantees
and exact optimum when /7<%, and #1/n <r>.

Now, consider our problem (P3). The first deriva-
tive of the objective function (8) is obtained by using
the chain rule;

_ogz) Azt Ha) g
D= =5, =" %a o,
= [(a—D/d(z)le ©
e (l—e "=D/(gle” ™) (1D

Note that when A <1,

Hr)<0 for r;=-In(1- A)
& )>0, otherwise.

On the other hand, when A 21, §(7)<0, V 7 ;.
Therefore it follows from the convexity of g7 )
shown in Theorem 2, when A <1, g(z) will be non-
increasing over z;<-In(1- A), and nondecreasing over

<-In (1- A). When A =1, g( 7} will be non-
increasing V' 7, By the way, it is easily found from
(11) that there is at most only a single value,
r?z P=—In(1—A)for A<,
=00, otherwise
of g which satisfies & (7)=0 for all ;.
From this analysis, we know that the problem (P3)

can be solved by the search procedure with the fol-
lowing mapping:

Ax)=

Y3 = Uy,

gz,

x{]—r n=N. .

C;=0;  X= Iy

= ln(]__a[}),

Finally, it should be noted thar since the inverse
function § (g can not be expressed in a closed form,
we need to use any simple numerical analysis tool to
determine r=7F "u/c))= 8w/ ) in Step 2 of the
procedure,

3. Application to the EOQ Model

In this paper, in order to pave the way to compare
computational results for different storage assignment
policies, RAN, CN, and FULL, we use the same not-
ation and assumptions for application as in Lee
(1998). The storage capacity models developed thus
far are applied to the AS/R system in which all items
are ordered based on the standard EQQ inventory
model. In this case, inventory level is uniform bet-
ween #; and 4; such that

;=0 and &=(2 éd;)l'&, Vi

where & is the ratio of ordering cost to holding cost
of item 7, which is assumed, for simplicity, to be
constant for all items. To represent the demand rate
of each item, geometric functions have been often
used(Hausman, Schwarz and Graves, 1976; Graves,
Hausman and Schwarz, 1977). In this paper, we
approximate the demand rate by a discrete geometric
probability distribution which is given by:

d=Dof=Dop(1-p) " 1A-(1p)), 1=1,- n (12)



280

Moon-Kyu Lee

Table 2. Optimal storage capacity and shortage probabilities for different values of A

i Storage Capacity Optimal Shortage Probabilities
A2 RAN | RANI s aran | ar ¢y as aq as’
0.1 649.12 | 1,014.67 | 748.31 0.1 0.0455 | 0.0270 [ 0.0160 | 0.0095 | 0.0057
1 649.12 | 1,014.67 | 748.32 0.1 0.0448 | 0.0271 0.0163 | 0.0098 | 0.0059
10 649.12 | 1,014.67| 748.76 0.1 0.0381 | 0.0274 !} 0.0186 | 0.0121 | 0.0077
100 691.89 |1,014.67| 777.77 0.01 0.01 0.01 0.01 .01 0.01
1000 | 723.12 | 1,014.67 ; 837.23 0.001 0.001 0.001 0.001 0.001 0.001

where Dy and p are the total demand per period
measured in full pallet loads and the skewness para-
meter of the distribution, respectively. Note that f{7)
in (12) is a truncated geometric probability function.
Notice that in this case, the inventory level of item I,
X, can be considered to follow the uniform distribution,
U(0, &) where =12 & Dop(1-4)" 111971,

Example problems are solved under the following
conditions to investigate the effects of change in item
demand rate on the solution pattern and the storage
capacity:
7=100, Dy=10000, & =1,#,5=0.05, @ =0.1,
A=1, 1,=0.1, 1, 10, 100, 1000,
p=0.0075, 0.0448, 0.1088.

To determine the storage capacity of a warehouse
where RAN is used for storage assignment, some
companies use a rule of thumb which sets the ca-
pacity equal to 85% of that required for FULL with
¢ =O(Francis, McGinnis and White, 1992).

The number of different items included in each
class for CN are set to be equal in the example pro-
blems. The overall results including those obtained
by the rule of thumb (here, denoted by RAN1) are
summarized in <Table 2> and <Table 3>. In
<Table 2>, @ pan* denotes the optimal value of @
for RAN and @;*,7=1,---, N, that for class I. From
< Table 22>, the following observations are made:

1) In case of CN, higher shortage probabilities are

preferentially assigned to highly frequent classes.

2) Since the upper bound of system shortage prob-

ability, @, is given, @ ran™ tends to be equal

to A as the value of A, increases.

3) As the value of A increases, storage capacities
for RAN and CN get bigger, which can be
certainly expected in the beginning.

4) The storage capacity for RAN1 came out to be
much larger than those for RAN and even C3,
which indicates that warehouses designed based
on the rule of thumb are too much bigger sized
than actually required.

Finally it is observed from <Table 3> that as the
skewness of the demand curve increases, the required
storage capacities for every storage policy including
RANI appear to decrease. The reason may be that as
p increases higher shortage probabilities are more
likely to be assigned to frequent turnover items.

4. Conclusions

In this paper, we consider a storage sizing problem
for a unit-load AS/RS under RAN and CN. The
objective of the problem is to minimize the overall
cost incurred from owning the storage space for the
warehouse and that from contracting space outside
of the company for shortage space. The problem for
each of the storage policy has been formulated as a
nonlinear optimization model. Optimal solutions of
the model for RAN can be easily obtained by taking
advantage of the convexity property for the objective
function. The model for CN has been solved by
applying the existing search procedure developed for

Table 3. Storage capacity required for different combinations of storage policy and skewness

parameter when 4> = 1
» RAN RANI1 2 c3 c4 s
0.0075 791.531 1,195.06 79751 830.80 860.58 887.66
0.0448 649.12 1,014.67 681.18 704.20 726.51 748.32
0.1088 467.70 706.24 486.23 494.61 504.03 514.52




Optimal Storage Capacity under Random Storage Assignment and Class-based Assignment Storage Policies

FULL by Lee{1998).

Due to the dynamic conditions and statistical de-
pendence among items that typically exist in real
situations, it is very difficult to determine exactly the
storage requirements, Therefore, where possible, the
distribution of the aggregare storage requirement
should be developed ditectly from the historical data.
If not, the results obtained using the statistical
approach presented here can be used in determining
bounds ot approximations for the first-cut design of
the storage. In addition, since the previous research
on storage sizing is very limited, the suggested
approach could be a fundamental basis for further
studies in this area.
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