• Title/Summary/Keyword: Optimal PID control

Search Result 248, Processing Time 0.024 seconds

Implementation of Optimal Temperature Controller for Thermoelectric Device-based Heating System Using Genetic Algorithm (유전알고리즘을 이용한 열전소지 기반 히팅 시스템의 최적 온도 제어기 구현)

  • Jung-Shik Kong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.41-47
    • /
    • 2023
  • This paper presents the development of a controller that can control the temperature of an heating system based on a thermoelectric module. Temperature controller using Peltier has various external factors such as external temperature, characteristics of an aluminum plate, installation location of temperature sensors, and combination method between the aluminum plate and heating element. Therefore, it is difficult to apply the simulation and simulation results of heating system using Peltier at control algorithm. In general, almost temperature controller is using PID algorithm that finds control gain value heuristically. In this paper, it is proposed mathematical model that explain correlate between the temperature of the heating system and input voltage. And then, optimal parameter of estimated thermal model of the aluminum plate are searched by using genetic algorithm. In addition, based on this estimated model, the optimal PID control gain are inferred using a genetic algorithm. All of the sequence are simulated and verified with proposed real system.

Optimal Condition Gain Estimation of PID Controller using Neural Networks (신경망을 이용한 PID 제어기의 제어 사양 최적의 이득값 추정)

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.717-719
    • /
    • 2003
  • Recently Neural Network techniques have widely used in adaptive and learning control schemes for production systems. However, generally it costs a lot of time for learning in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult to the PID gains suitably lots of researches have been reported with respect to turning schemes of PID gains. A Neural Network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed Neural Network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accident.

  • PDF

A Study on the Automatic Operation Performance Control of Urban Rail Vehicle Using an Optimal Control (최적제어를 이용한 도시철도 차량 자동주행 제어 연구)

  • Tak, Kil-Hun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In the automatic operation of an urban rail vehicle, a conventional PID control algorithm is applied to run the vehicle between stations within time limit and jerk limit. But the energy consumption in the automatic operation is much higher than in the manual operation. In this study, the optimal control algorithm for automatic operation is proposed to minimize energy consumption, which satisfies automatic operation for the urban rail vehicle, compared with the conventional PID control algorithm.

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

Optimal Communication Channel Scheduling for Remote Control of Lead Vehicle in a Platoon (군집 선행차량의 원격제어를 위한 통신 채널의 최적 스케줄링)

  • 황태현;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.969-976
    • /
    • 2003
  • A remote control strategy for vehicles in Intelligent Vehicle Highway System (IVHS) is considered. An optimal scheduling of a limited communication channel is proposed for lead vehicle control in a platoon. The optimal scheduling problem is to find the optimal communication sequence that minimizes the cost obtained inherently by an optimal control without the communication constraint. In this paper, the PID control law which guarantees the string stability is used for the lead vehicle control. The fact that the PID control law is equivalent to the approximately linear quadratic tracker allows to obtain the performance measure to find an optimal sequence. Simulations are conducted with five maneuvering platoons to evaluate the optimality of the obtained sequence.

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • Duy, Vo Hoang;Hung, Nguyen;Jeong, Sang-Kwun;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

Comparison of PID Controller Tuning of Power Plant Using Immune and Genetic Algorithms

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.358-363
    • /
    • 2003
  • Optimal tuning plays an important role in operations or tuning of the complex process such as the main steam temperature of the thermal power plant. However, it is very difficult to maintain the steam temperature of power plant using conventional optimization methods, since these processes have the time delay and the change of the dynamic characteristics in the reheater. Up to the present time, the Pm controller has been used. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper suggests immune algorithm based tuning technique for PID Controller on steam temperature process with long dead time and its results are compared with genetic algorithm based tuning technique.

  • PDF

Design of Optimal pm Controller Using Genetic Algorithm for Load Frequency Control of Power System (전력계통의 부하주파수 제어를 위한 유전 알고리즘을 사용한 최적 PID 제어기 설계)

  • Lee, J.P.;Wang, Y.P.;Kim, S.H.;Hur, D.R.;Chong, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.257-260
    • /
    • 1997
  • This paper designs the optimal PID controller for load frequency control on 2-area power system. Genetic algorithm is utilized to optimize parameters of PID controller which is applied to power system. Using two-point crossover, uniform crossover and one-point crossover, Search performance of genetic algorithm with each crossover method is considered. In case of load variation in 1-area, the dynamic characteristic of power system is considered. The simulation results show that the proposed PID controller is better control performance than PID controller using Ziegler-Nichols method.

  • PDF

Auto-Tuning Of Reference Model Based PID Controller Using Immune Algorithm

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.5-102
    • /
    • 2002
  • In this paper auto-tuning scheme of PID controller based on the reference model has been studied by immune algorithm for a process. Up to this time, many sophisticated tuning algorithms have been tried in order to improve the PID controller performance under such difficult conditions. However, in the actual plant, they are manually tuned through a trial and error procedure, and the derivative action is switched off. Therefore, it is difficult to tune. Simulation results by immune based tuning reveal that tuning approaches suggested in this paper is an effective approach to search for optimal or near optimal process control.

  • PDF

A Study on the Design of Linear PID Controller (선형 PID 제어기 설계에 관한 연구)

  • Cho, Joon-Ho
    • Journal of Industrial Convergence
    • /
    • v.16 no.2
    • /
    • pp.33-39
    • /
    • 2018
  • This paper describes the design method of the linear PID controller and proposed the design method in the future. The first PID design method is to ensure phase margin and gain margin. This method guarantees stability by designing in the frequency domain. The second method is an internal model control method. This method is to design the PID controller using the parameters of the internal model after identifying the internal model for the control model. Therefore, this method has a strong disturbance characteristic. Finally, a proposed Cascade and smith-Predictor controller. The combination of the cascade controller and the smith-predator of this method is a controller structure that has two advantages: robust control and optimal control. This method can obtain the performance evaluation index as the optimal controller design method. This PID controller design method becomes the basis of the nonlinear method and is being continuously studied.