• Title/Summary/Keyword: Optimal Model of GIS

Search Result 83, Processing Time 0.021 seconds

Comparative Analysis on the Attributes of NHPP Software Development Cost Model Applying Gamma Family Distribution (감마족 분포을 적용한 NHPP 소프트웨어 개발비용 모형의 속성에 관한 비교 분석)

  • Hyo-Jeong Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.867-876
    • /
    • 2023
  • In this study, the attributes of the NHPP software development cost model applying the Gamma family distribution (Erlang, Log-Logistic, Rayleigh) were newly analyzed, and after comparing with the Goel-Okumoto basic model to verify the properties of the model, the optimal model was also presented based on this. To analyze software reliability, failure time data that occurred randomly during system operation was used, and the calculation of the parameters was solved using the maximum likelihood estimation. As a result of comprehensive evaluation through various attribute analysis (mean value function, development cost, optimal release time), it was confirmed that the Rayleigh model had the best performance. Through this study, the attributes of the software development cost model applying the Gamma family distribution, which has no previous research case, were newly identified. Also, basic design data could also be presented so that developers can efficiently utilize this research data at an early stage.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Development of a Web-based Integrated System for Flow of Agricultural Products (Web 기반의 농산물 유통분석 통합 시스템 개발)

  • Suh, Kyo;Lee, Jeong-Jae;Kim, Tae-Gon
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.2 s.27
    • /
    • pp.1-8
    • /
    • 2005
  • This study is to develop a web-based integrated system for flow of agricultural products based on recent researches with engineering approach. The system stands on the basis of web for accessibility and usability. Three parts of the system consist of analysis of regional shipping characteristics using tank model, estimation of pallet load efficiency with Monte Carlo Simulation, a long term prediction of market price with reliability analysis. Besides a decision support module for selecting optimal shipping market is added through synthesizing techniques and spatial analysis using GIS and applied to Chinese cabbage of Pyeongchang in 2004.

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Designing the Optimal Urban Distribution Network using GIS : Case of Milk Industry in Ulaanbaatar Mongolia (GIS를 이용한 최적 도심 유통 네트워크 설계 : 몽골 울란바타르 내 우유 산업 사례)

  • Enkhtuya, Daariimaa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.159-173
    • /
    • 2019
  • Last-Mile delivery optimization plays a key role in the urban supply chain operation, which is the most expensive and time-consuming and most complicated part of the whole delivery process. The urban consolidation center (UCC) is regarded as a significant asset for supporting customer demand in the last-mile delivery service. It is the key benefit of UCC to improve the load balance of vehicles and to reduce the total traveling distance by finding the better route with the well-organized multi-leg vehicle journey in the urban area. This paper presents the model using multiple scenario analysis integrated with mathematical optimization techniques using Geographic Information System (GIS). The model aims to find the best solution for the distribution network consisted of DC and UCC, which is applied to the case of Ulaanbaatar Mongolia. The proposed methodology integrates two sub-models, location-allocation model and vehicle routing problem. The multiple scenarios devised by selecting locations of UCC are compared considering the general performance and delivery patterns together. It has been adopted to make better decisions the quantitative metrics such as the economic value of capital cost, operating cost, and balance of using available resources. The result of this research may help the manager or public authorities who should design the distribution network for the last mile delivery service optimization using UCC within the urban area.

  • PDF

Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

  • Fanos, Ali Mutar;Pradhan, Biswajeet;Mansor, Shattri;Yusoff, Zainuddin Md;Abdullah, Ahmad Fikri bin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.93-115
    • /
    • 2019
  • The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies.

Establishing a Korean Goral (Nemorhaedus caudatus raddeanus Heude) Reserve in Soraksan National Park, Korea: Based on Habitat Suitability Model, Habitat Capability Model, and the Concept of Minimum Viable Population (설악산 국립공원의 산양 보호구역 설정기법에 관한 연구: 서식지 적합성 모형, 서식지 수용능력, 최소 존속 개체군 이론을 이용하여)

  • Choi, Tae-Young;Park, Chong-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.23-35
    • /
    • 2005
  • Korean goral (Nemorhaedus caudatus raddeanus) is an endangered species in Korea, and the rugged terrain of the Sorksan National Park $(373km^2)$ is a critical habitat for the species. Since the goral population is threatened by habitat fragmentation, it is essential to establish a reserve for the isolated goral population. The objective of this study was to propose a reserve for Korean goral in the national Park We employed habitat suitability model, habitat capability model, and the concept of minimum viable population. The results of the study were as follows. First, the carrying capacity and optimal density of gorals in the national park were projected to be 449 gorals, and 251 gorals, respectively Second, since only one patch was projected to satisfy the criteria of minimum viable population (50 individuals/during 50 years), the long term extinction possibility of gorals in the site would be very high. Finally, the patch that satisfy the minimum viable population of goral was proposed as the core zone of the goral reserve and adjacent patches were included as buffer zones.

Flood Effects Analysis of Reservoir Basin through the Linkage of HEC-HMS and HEC-RAS Models (HEC-HMS와 HEC-RAS모형의 연계에 의한 댐 유역의 홍수영향 분석)

  • Lee, Weon-Hee;Kim , Sun-Joo;Kim , Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.15-25
    • /
    • 2004
  • For the effective operation of irrigation reservoirs, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. In this study, the flood effective analysis system was developed through the integration of long-term water budget analysis model, GIS-based HEC-HMS model and HEC-RAS model. The system structure consists of long-term water budget model using modified TANK theory, flood runoff and flood effects analysis model using HEC-GeoHMS, HEC-HMS and HEC-RAS models. The flood effects analysis system simulated the flood runoff from the upstream, downstream flood and long-term runoff of the watershed using the observed data collected from 1998 to 2002 of Seongju dam. The simulated results were reasonably good compared with the observed data. The optimal management method of the reservoir during the whole season is suggested in this study, and the flood analysis system can be a useful tool to evaluate a reservoir operation quantitatively for the mitigation of flood damages of reservoir basin.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (II) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (II): 위험도를 고려한 최적화 모형)

  • Park, Sang-Woo;Jang, Suk-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1029-1037
    • /
    • 2005
  • Urban Storm Sewer Optimal Design Model(USSOD) was developed to compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming (DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify. After testing the model, it is also applied to Ulsan drainage basin which was developed by Korea Land Cooperation(KOLAND). Comparing the design results of USSOD with those of KOLAND, discharge capacity 0.35 $m^3/sec$, the crown elevation is 0.77m higher and return cost is $9\%$ less than design results of KOLAND, which verify the improvement of USSOD. Layout design model using GIS and optimization including detention or retention effect are needed in the future study.

Study on a Demand Volume Estimation Method using Population Weighted Centroids in Facility Location Problems (시설물 입지에 있어 인구 중심점 개념을 이용한 수요 규모 추정 방법 연구)

  • Joo, Sung-A;Kim, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.11-22
    • /
    • 2007
  • This paper is to discuss analytical techniques to estimate demand sizes and volumes that determine optimal locations for multiple facilities for a given services. While demand size estimation is a core part of location modeling to enhance solution quality and practical applicability, the estimation method has been used in limited and restrict parts such as a single population centroid in a given larger census boundary area or small theoretical application experiments(e.s. census track and enumeration district). Therefore, this paper strives to develop an analytical estimation method of demand size that converts area based demand data to point based population weighted centroids. This method is free to spatial boundary units and more robust to estimate accurate demand volumes regardless of geographic boundaries. To improve the estimation accuracy, this paper uses house weighted value to the population centroid calculation process. Then the population weighted centroids are converted to individual demand points on a grid formated surface area. In turn, the population weighted centroids, demand points and network distance measures are operated into location-allocation models to examine their roles to enhance solution quality and applicability of GIS location models. Finally, this paper demonstrates the robustness of the weighted estimation method with the application of location-allocation models.

  • PDF