• Title/Summary/Keyword: Optimal Methods

Search Result 5,183, Processing Time 0.028 seconds

Optimal Working Cycles for Minimal Repair Policy (정기교체 및 최소수리를 고려한 작업주기 횟수 최적화)

  • Lee, Jinpyo
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.201-214
    • /
    • 2020
  • Purpose: The purpose of this paper is to determine an optimal number of cycle times for the replacement under the circumstance where the system is replaced at the periodic time and the multiple number of working cycles whichever occurs first and the system is minimally repaired between the replacements if it fails. Methods: The system is replaced at periodic time () or cycle time, whichever occurs first, and is repaired minimally when it fails between successive replacements. To determine the optimal number of cycle times, the expected total cost rate is optimized with respect to the number of cycle times, where the expected total cost rate is defined as the ratio of the expected total cost between replacements to the expected time between replacements. Results: In this paper, we conduct a sensitivity analysis to find the following results. First, when the expected number of failures per unit time increases, the optimal number of cycle times decreases. Second, when the periodic time for replacement becomes longer, the optimal number of cycle times decreases. Third, when the expected value for exponential distribution of the cycle time increases, the optimal number of cycle times increases. Conclusion: A mathematical model is suggested to find the optimal number of cycle times and numerical examples are provided through the sensitivity analysis on the model parameters to see the patterns for changes of the optimal number of cycle times.

Determining an Optimal Production Time for EPQ Model with Preventive Maintenance and Defective Rate (생산설비의 유지보수서비스와 제품의 불량률을 고려한 최적 생산주기 연구)

  • Kim, Migyoung;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Purpose: The purpose of this paper is to determine an optimal production time for economic production quantity model with preventive maintenance and random defective rate as the function of a machinery deteriorates. Methods: If a machinery shifts from "in-control" state to "out-of-control" state, a proportion of defective items being produced increases. It is assumed that time to state shift is a random variable and follows an arbitrary distribution. The elapsed time until process shift decreases stochastically as a production cycle repeats and quasi-renewal process is used to implement for production facilities to deteriorate. Results: When the exponential parameter for exponential distribution increases, the optimal production time increases. When Weibull distribution is considered, the optimal production time is closely affected by the shape parameter of Weibull distribution. Conclusion: A mathematical model is suggested to find optimal production time and optimal number of production cycles and numerical examples are implemented to validate the patterns for changes of optimal times under different parameters assumptions. The real application is implemented using the proposed approach.

Application Methods of the Natural Topography and Environmental Facts for Building Optimum Eco-Village (최적 생태마을 조성을 위한 자연지형과 환경요인 적용기법 연구)

  • YEON, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.59-67
    • /
    • 2015
  • There are several methods for building optimal eco-villages in a narrow territory. To derive a new optimal eco-village factors by combining environmental factors from ubiquitous sensor network and topography factors, this study attempted to investigate ecological spaces of specific human settlements, to compare those with the spatial analytical results on natural real settlements, and to draw a construction plan for an optimal ecological village. This study presented a new milestone for building eco-villages in the large or small village units of the entire country in the fact that we can find a living space to make natural healing possible by integrating ecological factors and wellbeing spatial configuration using more healthy natural space. Also, this study proposed a practical method to do so.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Optimal Thresholds from Non-Normal Mixture (비정규 혼합분포에서의 최적분류점)

  • Hong, Chong-Sun;Joo, Jae-Seon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.943-953
    • /
    • 2010
  • From a mixture distribution of the score random variable for credit evaluation, there are many methods of estimating optimal thresholds. Most the research news is based on the assumption of normal distributions. In this paper, we extend non-normal distributions such as Weibull, Logistic and Gamma distributions to estimate an optimal threshold by using a hypotheses test method and other methods maximizing the total accuracy and the true rate. The type I and II errors are obtained and compared with their sums. Finally we discuss their e ciency and derive conclusions for non-normal distributions.

Security Constrained Optimal Power Flow by Hybrid Algorithms (하이브리드 알고리즘을 응용하여 안전도제약을 만족시키는 최적전력조류)

  • Kim, Gyu-Ho;Lee, Sang-Bong;Lee, Jae-Gyu;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.305-311
    • /
    • 2000
  • This paper presents a hybrid algorithm for solving optimal power flow(OPF) in order to enhance a systems capability to cope with outages, which is based on combined application of evolutionary computation and local search method. The efficient algorithm combining main advantages of two methods is as follows : Firstly, evolutionary computation is used to perform global exploitation among a population. This gives a good initial point of conventional method. Then, local methods are used to perform local exploitation. The hybrid approach often outperforms either method operating alone and reduces the total computation time. The objective function of the security constrained OPF is the minimization of generation fuel costs and real power losses. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). In OPF considering security, the outages are selected by contingency ranking method(contingency screening model). The OPF considering security, the outages are selected by contingency ranking method(contingency screening model). The method proposed is applied to IEEE 30 buses system to show its effectiveness.

  • PDF

Estimation of Vibration Field of a Cylindrical Structure Derived by Optimal Sensor Placement Methods (센서최적배치 기법에 의한 원통형 구조물의 진동장 예측)

  • Jung, Byung-Kyoo;Jeong, Weui-Bong;Cho, Dae-Seung;Kim, Kookhyun;Kang, Myeonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.381-389
    • /
    • 2014
  • This study is concerned with the estimation of vibration-field of a cylindrical structure by modal expansion method(MEM). MEM is a technique that identifies modal participation factors using some of vibration signals and natural modes of the structure: The selection of sensor locations has a big influence on predicted vibration results. Therefore, this paper deals with four optimal sensor placement( OSP) methods, EFI, EFI-DPR, EVP, AutoMAC, for the estimation of vibration field. It also finds optimal sensor locations of the cylindrical structure by each OSP method and then performs MEMs. Predicted vibration results compared with reference ones obtained by forced response analysis. The standard deviations of errors between reference and predicted results were also calculated. It is utilized to select the most suitable OSP method for estimation of vibration field of the cylindrical structure.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.