• Title/Summary/Keyword: Optimal Engine

Search Result 605, Processing Time 0.026 seconds

Study on Engine-CVT Consolidated Control(I) -Development of Consolidated Control Algorithm (엔진-CVT 통합제어에 관한 연구(I) -통합제어 알고리즘 개발)

  • 김달철;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.86-96
    • /
    • 1997
  • In this paper, engine-CVT consolidated control algorithm was developed. Engine -CVT control strategy suggested uses throttle control based on power difference and CVT ratio control based in CVT ratio map. Simulation results showed that the larger the rate of CVT ratio, the better the engine performance in the optimal operation line. Also, it was found that the engine performance where the magnitude of the acceleration changes abruptly depends on the magnitude of the rate of CVT ratio. Comparing the results of CVT control only without engine control, the engine-CVT control algorithm suggested in this work showed better performance demonstrating that the consolidated control algorithm should be required for the engine optimal operation.

  • PDF

Performance Optimization of Electromagnetic Active Engine Mount (전자식 능동 엔진 마운트 성능 최적화)

  • Kim, Won-Kyu;Kim, Youn-Su;Lee, Wan-Chul;Hong, Sung-Woo;Kim, Gui-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.514-519
    • /
    • 2011
  • Recently, the interest in technologies for a highly efficient powertrain, i.e. a variable displacement engine or a light weight car body, to improve the fuel efficiency of automobile saving the environment has been increased. However this trend deteriorates NVH performance of a vehicle and the use of a conventional engine mounting system becomes unsatisfactory. In order to solve this dilemma, an active engine mounting system that could isolate or cancel out vibrations occurred at the powertrain was suggested. In this paper, In order to optimize the electromagnetic active engine mount performance, the actuator of the engine mount through FEM analysis and optimal design, noise and elastomer testing of the prototype through the optimal design of actuators for the electromagnetic active engine mount on the impact of the performance improvement is verified.

  • PDF

A Study on the Optimal Replacement Time of T-53 Engine (T-53엔진의 최적교체시기에 관한 연구)

  • Kim, Chung-Young;Goun, Jun
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.143-152
    • /
    • 1998
  • This paper focuses on the determining the optimal replacement interval and the corresponding minimum cost of replacement for the renewal T-53 engine. It is assumed that sample failure data of T-53 engine are drawn from the mixed population, and then parameters of the failure distributions are estimated. On the basis of the above situation, the Multi-step Weibull distributions are estimated and then the optimal replacement time of T-53 engine is determined. This paper shows that if the replacement time is reduced to 2000 hours, the 2,217won of the replacement cost per unit time is only saved but also reliability of the T-53 engine is increased.

  • PDF

Optimal battery selection for hybrid rocket engine

  • Filippo, Masseni
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.401-414
    • /
    • 2022
  • In the present paper, the optimal selection of batteries for an electric pump-fed hybrid rocket engine is analyzed. A two-stage Mars Ascent Vehicle, suitable for the Mars Sample Return Mission, is considered as test case. A single engine is employed in the second stage, whereas the first stage uses a cluster of two engines. The initial mass of the launcher is equal to 500 kg and the same hybrid rocket engine is considered for both stages. Ragone plot-based correlations are embedded in the optimization process in order to chose the optimal values of specific energy and specific power, which minimize the battery mass ad hoc for the optimized engine design and ascent trajectory. Results show that a payload close to 100 kg is achievable considering the current commercial battery technology.

A Study on the Optimal Replacement Policy of the F16 Aircraft Engine Modules (F16 항공기 엔진모듈 최적교체정책에 관한 연구)

  • 김충영;강휘태
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.43-56
    • /
    • 1998
  • This paper focuses on the optimal replacement time of engine modules of the F16 aircraft. Generally, the optimal replacement time of those should be determined to minimize the replacement cost due to out of order and opportunistic replacement cost of operation cost of remaining period. This paper determined the optimal replacement time by using the opportunistic replacement algorithm that is developed by Forbes and Wyatt. Some real data are utilized but a few data is estimated due to limitation of data. As a result, fan module only reaches to the opportunistic replacement time. The optimal replacement time of the fan module is derived as 1740 cycles. Therefore, the optimal replacement policy of engine modules of the F16 is that fan module should be replaced whenever it is out of order under 1740 cycles and whenever core module is out of order over 1740 cycles.

  • PDF

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(II) -Performance of Optimal System- (트랙터의 기관속도 및 변속비의 최적제어에 관한 연구(II) -최적운전 제어 시스템의 성능-)

  • Kang, S.B.;Ryu, K.H.;Oh, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.291-300
    • /
    • 1994
  • It is desired to operate tractor engines at or near maximum torque much of the time in field operation to increase fuel efficiency. To do this it is necessary to reduce engine speed and to shift gears to higher ratios as frequently as possible. Because of load variations in most drawbar work and inconvenience in gear shift, however, gear-type transmission are usually set in one ratio at unnecessarily high engine speeds, and engine-torque variations are used to compensate for changes in drawbar load. As a result, the most of time the tractor is not operated efficiently in terms of fuel consumption and work output. The objective of this study was to develop an automatic control system which is able to operate a tractor equipped with gear transmission under the optimal condition in terms of fuel efficiency with automatic governor setting and gear shift. An indoor experimental test set which can be used to simulate tractor operation, control engine speed and transmission ratio was developed in the previous paper. In this paper, the performance of the optimal operation system is reported. Through a series of tests, it was found that the automatic control system for optimal operation of tractors with gear transmission had a satisfactory performance.

  • PDF

Development of an operation and control software for electro-hydraulic (전자유압식 CVT의 운용 및 제어 소프트웨어 개발과 실시간 제어)

  • Kwan, H. B.;Kim, K. W.;Kim, H. S.;Eun, T.;Park, C. I
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • In CVT vehicle, the engine speed is completely decoupled from the vehicle speed within the range from maximum transmission ratio to minimum transmission ratio. This allows the engine to operate in optimal state(e.g. best fuel economy or maximum power mode.) In this study, the CVT control algorithm for optimal operation of engine is suggested. In order to implement the real time digital control of electro-hydraulic CVT system, a software called CVTCON has been developed. CVTCON also includes the CVT operation module, (2) system test module, (3) system control module and (4) data management module. By using the CVTCON and the electro-hydraulic CVT system, two modes of experiments were carried out: constant throttle opening mode and acceleration mode. From the experimental result, it was found that the algorithm suggested in this study showed optimal operation of the CVT system.

  • PDF

Effectiveness and Optimal Design of Vibration Isolating Rubber As an Engine Mount of Walking-Type Cultivators (보행형 관리기의 엔진 마운트로서 방진고무의 효과와 최적화 설계)

  • Park Y. J.;Lee Y. S.;Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.385-394
    • /
    • 2004
  • The objectives of this study were to investigate the effectiveness of rubber as an engine mount of walking-type cultivators and to determine its optimal spring constant and damping coefficient using a dynamic simulation of the engine mount system. Four different types of rubber mounts were tested to determine their spring constants and damping coefficients, and the best type was selected for the isolation of the engine vibrations transmitted to the handle. The total vibration levels transmitted to the handle when the rubber mounts weren't installed were 17.52 $m/s^2$. The total vibration levels transmitted to the handle when the rubber mounts were installed were 10.69 $m/s^2$ for Stripe 1, 11.33$m/s^2$ for Stripe 2, 10.92$m/s^2$ for Stripe 3 and 14.19$m/s^2$ for Hive, respectively, resulting in an average of $30\%$ reduction when compared with that without the engine mount. A dynamic model of the cultivator's engine-mount system and its simulation program were developed and verified. A method was proposed to determine the optimal spring constant and damping coefficient of the engine-mount system. It was found from the simulation that a spring constant of 4,100 kN/m and the largest damping coefficient were the most effective for the vibration isolation.

Design of Low Noise Engine Cooling Fan for Automobile using DACE Model (전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계)

  • Sim, Hyoun-Jin;Park, Sang-Gul;Joe, Yong-Goo;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.