• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,624, Processing Time 0.035 seconds

Mechanical Properties of the Foamed Aluminum According to the Quantity of Calcium (칼슘 첨가량에 따른 발포 알루미늄의 기계적 성질)

  • Do Bok-Hwan;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • In this work, we observed the changes in mass difference according to Al-foam's amount of Ca contents which depends on the viscosity control of fusion, quality of foamed addition, mixing, temperature tests. These are crucial influencing factors in determining foam-metal's size in the manufacturing process. In order to obtain the specimen, we changed the specific gravity from 0.2 to 0.3 for the study of the light weight, and obtained the optimal values of specific gravity, and then showed the mechanical characteristics of ultra-lightweight metal according to the changing mass. The optimal conditions for aluminum foam is when the addition of Ca content in $1.5wt\%~2.0wt\%$

Trajectory Optimization for Underwater Gliders Considering Depth Constraints (수심 제한을 고려한 수중 글라이더 경로 최적화)

  • Yoon, Sukmin;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.560-565
    • /
    • 2014
  • In this study, the problem of trajectory optimization for underwater gliders considering depth constraints is discussed. Typically, underwater gliders are controlled to dive and climb in a saw-tooth pattern at constant gliding angles. This approach is effective and close to optimal for deep water applications. However, the optimal path deviates from the saw-tooth path in shallow water conditions. This study focuses on finding more efficient gliding paths that can minimize the traverse time in the horizontal plane when the water depth is limited. The trajectory optimization problem is formulated into a minimum time control problem with inequality path constraints and hydrodynamic drag effects. A numerical approach based on the pseudo-spectral method is adopted as a solution approach, and the simulation results are presented.

A Study on Power System State Estimation and bad data detection Using PSO (PSO기법을 이용한 전력계통의 상태추정해법과 불량정보처리에 관한 연구)

  • Ryu, Seung-Oh;Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.261-263
    • /
    • 2008
  • In power systems operation, state estimation takes an important role in security control. For the state estimation problem, the weighted least squares(WLS) method and the fast decoupled method have been widely used at present. But these algorithms have disadvantage of converging local optimal solution. In these days, a modern heuristic optimization method such as Particle Swarm Optimization(PSO), are introduced to overcome the problems of classical optimization. In this paper, we proposed particle swarm optimization (PSO) to search an optimal solution of state estimation in power systems. To demonstrate the usefulness of the proposed method, PSO algorithm was tested in the IEEE-57 bus systems. From the simulation results, we can find that the PSO algorithm is applicable for power system state estimation.

  • PDF

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

Capacity-constrained Outsourcing to Two Contract Manufacturers with Diferent Improvement Capabilities

  • Kim, Bo-Won
    • Management Science and Financial Engineering
    • /
    • v.5 no.2
    • /
    • pp.1-23
    • /
    • 1999
  • We investigate a supply chain arrangement where a manufacturing company outsources it sassmbly operations to two contract manufacturers. Each contract manufacturer is different in improvement capability : e.g., one is more capable than the other. This improvement capability is supposed to in-duce supply cost reduction that ultimately benefits the manufacturing company. Over time, the manufacturer has to decide how much it should outsource to each contract manufacturer and how much processde/assembled the semi-finished units should be when they re shipped back to the manufacturing company from the contract manufacturers. We employ the optimal control theory to answer the questions, and suggest numerical examples focused on the relationship among the optimal outsourcing amounts, contract manufacturer's improvement capabilities, and their capacity con-straints.

  • PDF

A Study on the Optimization of Fuel-Cell Stack Design (연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

Performance Characteristics of Direct Methanol Fuel Cell with Methanol Concentration (메탄올 농도에 따른 직접 메탄올 연료전지의 성능 해석)

  • Cho, Chang-Hwan;Kim, Yong-Chan;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2008
  • DMFC(Direct Methanol Fuel Cell) is one of promising candidates for power sources of small mobile IT devices like notebook, cell phone, and so on. Efficient operation of fuel cell system is very important for long-sustained power supply because of limited fuel tank size. It is necessary to investigate operation characteristics of fuel cell stack for optimal control of DMFC system. The generated voltage was modeled according to various operating condition; methanol concentration, stack temperature, and load current. It is inevitable for methanol solution at anode to cross over to cathode through MEA(membrane electrode assembly), which reduces the system efficiency and increases fuel consumption. In this study, optimal operation conditions are proposed by analyzing stack performance model, cross-over phenomenon, and system efficiency.

A study on the Secondary Side Control DC-DC Converter in Wireless Power Transfer System (무선전력전송 시스템에서 2차측 DC-DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Bae, Jin-Yong;Yun, Hong-Min;Lee, Sung-Ho;Cho, Young-il;Park, Seung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1006-1007
    • /
    • 2015
  • Recent improvement in semiconductor technology make efficient switching possible at higher frequencies, which benefits the application of wireless inductive energy transfer. However, a higher frequency does not alter the magnetic coupling between energy transmitter and receiver. Due to the still weak magnetic coupling between transmitting and receiving sides that are separated by a substantial air gap, energy circulates in the primary transmitting side without being transferred to the secondary receiving side. This paper proposes an analysis on the system efficiency to determine the optimal impedance requirement for coils, rectifier and DC-DC Converter. A novel Boost DC-DC Converter is designed to provide the optimal impedance matching in WPT(Wireless Power Transfer) system for various loads.

  • PDF

A Study on the Optimal Design and Forming of the Alternator Housing

  • Han, Kyu-Taek;Park, Jung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.361-366
    • /
    • 2004
  • The die casting process was used to manufacture an automotive alternator housing. Generally automobile parts are required to be light and have high strength. The control of casting defects is important but has usually been depended only on the experience of the foundry engineer. Therefore simulations have been carried out on the die casting process of alternator housing. In this paper. we investigated the characteristics of the die casted alternator housing with the HPDC(High Pressure Die Casting) process. We presented the results of filling behavior and solidification process of the cast, The analysis results obtained from the filling behavior and solidification of cast agreed with test results.

First-Order Sensitivities for FACTS Devices using UPFC Ideal Transformer Model (UPFC 이상변압기 모델을 사용한 유연송전장치 일차민감도 해석)

  • Thomas W. Gedra;Seung-Won An
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.837-846
    • /
    • 2004
  • This paper presents a screening technique for greatly reducing the computation involved in determining the optimal location and types of Flexible AC Transmission System (FACTS) devices in a large power system. The first-order sensitivities of the generation cost for various FACTS devices are derived. This technique requires solving only one optimal power flow (OPF) to obtain sensitivities with respect to FACTS device control variables for every transmission line To implement a sensitivity-based screening technique, we used a new UPFC model, which consists of an ideal transformer with a complex turns ratio and a variable shunt admittance. A S-bus system based on the IEEE 14-bus system was used to illustrate the technique.