• Title/Summary/Keyword: Optics design

Search Result 894, Processing Time 0.032 seconds

Design of a Telephoto Optical System for SWIR Using Apochromatic and Athermal Method

  • Tae-Sik Ryu;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.472-483
    • /
    • 2024
  • This paper presents an intuitive method for selecting an optical material for achromatic and athermal design using the material selection index (MSI). In addition, in the case of a wide wavelength range such as a short-wave infrared (SWIR) waveband, we propose a new material selection method for apochromatic and athermal design by introducing the relative error of partial dispersion (REPD) and a first-order quantity redistribution method. To obtain a suitable material for effective apochromatic design, we first evaluate the REPDs of all lenses, deviated from that of an equivalent lens. Materials with a small REPD are then selected on a glass map to correct residual chromatic aberration while maintaining the existing MSI values to realize athermalization simultaneously. Using this proposed glass selection method, we successfully obtained an apochromatic and athermal telephoto system for SWIR that realizes stable performance over the specified temperature and wide waveband ranges.

Design of an Optical System for Iris Photographing (홍채 촬영용 광학계 설계)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.4
    • /
    • pp.39-44
    • /
    • 2009
  • Purpose: To design a mini optical system photographing the iris, which is used in the iridology. Methods: We designed a mini optical system photographing the iris by using the Sigma 2000 design program. Results: We designed a mini optical system photographing the iris, which is suitable in the CCD using a micro actuator for auto-focusing, of which characteristics have the TCL of 30 mm, a magnification of -0.65, about 8.0 mm distance from the 1st lens to the last lens, the max barrel diameter of 11 mm, and about 1 mm of the effective stop diameter. Also the resolution line width of this system is characterised by 92 lps/mm at the 30% MTF value criterion. Conclusions: By designing an optical system of which characteristics have the TCL of 30 mm, about 8.0 mm distance from the 1st lens to the last lens, the max barrel diameter of 11 mm, and the resolution line width of $5.4{\mu}m$ at the 30% MTF value criterion, we could miniaturize the iris photographing optical system.

  • PDF

Study on the Design of Asymmetric Lighting with Uniform Illumination Over a Large Area at Short Distance (단거리 조사 시 넓은 면적에 균일한 조명도를 가지는 비대칭 조명 광학계 설계 연구)

  • Kang, Dong-Hwa;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.4
    • /
    • pp.183-190
    • /
    • 2020
  • In this paper, the illuminating optics of asymmetric light distribution was studied, which allowed the light distribution to be uniform even for short-range irradiation on a wide illumination area. In the case of a light installed at a short distance, the light is not diffused enough because of the short irradiation distance. For this reason, it is difficult to satisfy uniformity of illumination. In addition, lighting design for asymmetric distribution is required because the lighting device is installed tilted, for visibility. Therefore, the design of lighting systems with asymmetric light distribution could achieve uniform illumination of the target surface even under short-distance irradiation. This was then applied to the license lamp, a lighting system featuring short light irradiation distance, to confirm that it satisfies the legal standards.

Emitter Electrode Design to Optimize the Optical and Electrical Characteristics of Planar Solar Cells (평판형 태양 전지의 광학 및 전기적 특성 최적화를 위한 에미터 전극 설계 연구)

  • Lee, Sangbok;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this study, we propose a design method to optimize the electro-optical efficiency of a planar solar cell structure by adjusting one-dimensionally periodic emitter electrodes. Since the aperture ratio of the active layer decreases as the period of the emitter electrode decreases, the amount of light absorption diminishes, affecting the performance of the device. Here we design the optimal structure of the periodic emitter electrode in a simple planar solar cell, by simulation. In terms of optics, we find the condition that shows optical performance similar to that of a reference without the emitter electrode. In addition, the optimized electrode structure is extracted considering both the optical and electrical efficiency. This work will help to increase the utilization of solar cells by suggesting a structure that can most efficiently transfer charge generated by photoelectric conversion to the electrodes.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

An Optimal Aerodynamic and RCS Design of a Cruise Missile (공력 및 RCS 해석 기반의 순항 유도탄 최적설계)

  • Yang, Byeong-Ju;Song, Dong-Gun;Kang, Yong-Seong;Jo, Je-Hyeon;Je, Sang-Eon;Kim, Byeong-Kwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.479-488
    • /
    • 2019
  • A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.

Study of the Optical System Design of a Reflective LED Stand to Reduce Glare (눈부심 감소를 위한 반사형 LED 스탠드 광학계 설계에 관한 연구)

  • Kong, Mi-Seon;Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.334-343
    • /
    • 2020
  • In this paper, a study of the design of a lighting optical system to form indirect light was conducted, to reduce the glare caused by the hot spot of the LED. In the case of using an LED for indoor lighting, glare is caused because of the high luminance and non-uniform luminance distribution. In particular, LED stands are located close to the user's eyes and are used for a long time, so research to reduce glare is essential. Therefore, in this paper an optical system structural study and the design of an LED stand for glare reduction were conducted. Afterward, the luminance analysis and comparison to an existing LED stand product confirmed that the reflective LED stand proposed in this paper had better performance in terms of glare.

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

A Study on the Design Identity of Optical Shop Brands (안경원 브랜드의 디자인아이덴티티에 관한 연구)

  • Hong, Sung-Il;Son, Jeong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.435-443
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the design identity visual elements of optical shop brand$\underline{s}$ in order to provide objective data necessary for optical shop brands' design development. Methods: This study examined the design identity concept of the optical shop brands and analyzed visual elements of brand design identity with a focus on the symbols of domestic franchise optical shops, type of a symbol mark, representation style of logo type, color usage, use or non-use of character, etc. Results: Many symbols were directly associated with the eyeglasses, such as eyeglasses and eyes, face and iris. Along with that, letters or figures were also observed. For the type of symbol, most types were found to have the designs that took spherical and word mark shapes. Particularly, the word mark type had English words more often than Korean words. For logo types, the gothic format was dominant. In relation to the thickness of letter, thick boldface type was commonly used. The combination of 2 degrees was the color frequency used most often in the optical shop brand design. For the frequency of color usage, black and red colors were used most often. Particularly, the orange color, as well as the black color, was also often used for the main color of symbols or logo types. Meanwhile, the characters were used only in some optical shop. Most characters were animals and expressed in the cartoon and graphical forms. Conclusions: Typifier, symbol mark, logo type, color, and character are the elements forming the basic development system for brand design identity. Systematic design is needed which clearly ensures the function and role along with the mutual consistency as a important visual component of the optical shop brand.

Design of Color Matching Filters and Error Analysis in Colorimetric Measurement of LCD Flat Panel Display Using the Filters (등색함수 필터의 설계와 이를 이용한 LCD 평판 디스플레이의 색채 측정에 대한 오차 분석)

  • Jeon, Ji-Ho;Jo, Jae-Heung;Park, Seung-Nam;Park, Chul-Woung;Lee, Dong-Hoon;Jung, Ki-Lyong
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Filter colorimeters have a set of spectral bands for which spectral responsivity is the same as the color matching function defined by CIE (Commission Internationale de I'Eclairage). We have designed a set of color matching function filters denoted by $\bar{x}-filter,\;\bar{y}-filter,\;and\;\bar{z}-filter$. Because the $\bar{x}-function$ has two transmission bands, two $\bar{x}-filters$ are designed to cover the $\bar{x}-function$. To design the filters, we developed a nonlinear least square fit program which determines the thickness of the color glasses by minimizing its spectral mismatch value ($f{_1}'$) to below 3 %. The design has been validated by fabrication of the $\bar{y}-bar$ filter, of which $f{_1}'$ was measured to be 2.8 %. Considering a LCD flat panel display as a device under test, we have calculated the systematic error of the colorimetric measurement using the designed filters.