DOI QR코드

DOI QR Code

An Optimal Aerodynamic and RCS Design of a Cruise Missile

공력 및 RCS 해석 기반의 순항 유도탄 최적설계

  • Yang, Byeong-Ju (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Song, Dong-Gun (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kang, Yong-Seong (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Jo, Je-Hyeon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Je, Sang-Eon (Hanwha Corporation) ;
  • Kim, Byeong-Kwan (Hanwha Corporation) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2019.03.08
  • Accepted : 2019.06.26
  • Published : 2019.07.01

Abstract

A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.

순항 유도탄은 비행기처럼 날개와 제트엔진을 사용하여 상당 거리를 순항한 후 최종 목표에 도달하는 유도탄이다. 적의 레이더에 쉽게 포착되지 않을뿐더러 아음속 장거리 순항이 가능해야 하므로, RCS 저감과 향상된 공력성능을 고려한 통합 설계가 필수적이다. 본 연구에서는 Taurus 유도탄과 유사한 순항 유도탄 모델을 설계한 후, Physical Optics (PO; 물리적 광학) 기법과 Navier-Stokes CFD 코드를 사용하여 비행체의 RCS와 공력특성을 분석하였다. 이를 바탕으로 공력성능 향상과 RCS 저감 기술이 적용된 순항 유도탄의 최적 형상을 도출하였다.

Keywords

References

  1. Bae, H. G., Lee, K. K., Jeong, J. N., Sang, D. K., and Kwon, J. H., "500 lbs-class Air-to-Surface Missile Design by Integration of Aerodynamics and RCS," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 2, 2012, pp. 184-191. https://doi.org/10.5139/JKSAS.2012.40.2.184
  2. Park, M. J., "A Study on Prediction and Reduction Methods of Radar Cross Section," M. S. Thesis, Gyeongsang National University, 2008.
  3. Knott, E. F., Shaeffer, J. F., and Tuley, M. T., Radar Cross Section, 2nd Ed., SciTech Publishing Inc., Boston, 2004.
  4. Myong, R. S., Aircraft Survivability and Stealth Technology, Lecture Note, Gyeongsang National University, 2017.
  5. Jang, M. U., "Development of a Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics," M. S. Thesis, Gyeongsang National University, 2014.
  6. Ozturk, A. K., "Implementation of Physical Theory of Diffraction for Radar Cross Section Calculations," M. S. Thesis, Bilkent University, 2002.
  7. Park, G. R., "A Combined Electromagnetic and Aerodynamic Optimization Study for Radar Cross Section Reduction," M. S. Thesis, Gyeongsang National University, 2011.
  8. FEKO Comprehensive Electromagnetic Solutions (User's Manual), Suite 14.0, Altair, 2015.
  9. ANSYS Fluent 18 Tutorial Guide, Ansys, 2017.
  10. Park, J. H., Myong, R. S., and Cho, T. H., "Effect of Control Canard Deflection on the Aerodynamic Characteristics of a Guided Missile Using CFD," Korean Society for Computational Fluids Engineering, 2014, pp. 161-162
  11. Ross, H. M., and O'Rourke, M. J., "Exploratory Investigation of Forebody Strakes for Yaw Control of a Generic Fighter With a Symmetric $60^{\circ}$ Half-Angle Chine Forebody," NASA Technical Paper 3604, 1997.
  12. Choi, S. W., and Boo, S. Y., "Computation of Radar Cross Section of Ship's Structure Using a Physical Optics Method," Journal of the Society of Naval Architects of Korea, Vol. 37, No. 4, 2000, pp. 82-91.
  13. Kuethe, A. M., and Chow, C. Y., Foundations of Aerodynamics, Bases of Aerodynamic Design, Fourth Edition, John Wiley & Sons, 1986.
  14. Bae, T. K., "Low Observable Stealth Configuration Air-Launched Cruise Missile Conceptual Design, Aerodynamics and Radar Cross Section Analysis," M. S. Thesis, Gyeongsang National University, 2008.
  15. Jo, Y. M., "Shape Optimization of UCAV for Aerodynamic Performance Improvement and Radar Cross Section Reduction," Journal of the Korean Society for Computational Fluids Engineering, Vol. 17, No. 4, 2012, pp. 56-68. https://doi.org/10.6112/kscfe.2012.17.4.056
  16. Park, M. J., Lee, D. H., Myong, R. S., and Cho, T. H., "An Integrated System for Aerodynamic, Structural, and RF Stealth Analysis of Flying Vehicles," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 36, No. 1, 2008, pp. 86-91. https://doi.org/10.5139/JKSAS.2008.36.1.086