• Title/Summary/Keyword: Optically stimulated luminescence dosimeter

Search Result 35, Processing Time 0.022 seconds

A Study on Retrospective of External Radiation Exposure Dose by Optically Stimulated Luminescence of Smart Chip Card (스마트칩 카드을 이용한 광 자극 발광 특성 연구)

  • Park, Sang-Won;Yoo, Se-Jong
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.379-385
    • /
    • 2019
  • Radiation is used for various purposes such as cancer therapy, research of industrial and drugs. However, in case of radiation accidents such as terrorism, collapsing nuclear plant by natural disasters like Fukushima in 2011, very high radiation does expose to human and could lead to death. For this reason, many people are concerning about radiation exposures. Therefore, assessment and research of retrospective radiation dose to human by various path is an necessary task to be continuously developed. Radiation exposure for workers in radiation fields can be generally measured using a personal exposure dosimeter such as TLD, OSLD. However, general people can't be measured radiation doses when they are exposed to radiation. And even if radiation fields workers, when they do not in possession personal dosimeter, they also can't be measured exposure dose immediately. In this study, we conduct retrospective research on reconstruction of dose after exposure by using smart chip card of personal items through Optically Stimulated Luminescence (OSL). The OSL signal of smart chip card shows linear response from 0.06 Gy to 15 Gy and results of fading rate 45 %, 48% for 24 and 48 hours due to the natural emission of radiation in sample, respectively. The minimum detectable limit (MDD) was 0.38 mGy. This values are expected to use as correction values for reconstruction of exposure dose.

Comparative Study of the Effective Dose from Panoramic Radiography in Dentistry Measured Using a Radiophotoluminescent Glass Dosimeter and an Optically Stimulated Luminescence Detector

  • Lee, Kyeong Hee;Kim, Myeong Seong;Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1377-1384
    • /
    • 2018
  • Accurate measurement of the absorbed dose and the effective dose is required in dental panoramic radiography involving relatively low energy with a rotational X-ray tube system using long exposures. To determine the effectiveness of measuring the irradiation by using passive dosimetry, we compared the entrance skin doses by using a radiophotoluminescent glass dosimeter (RPL) and an optically stimulated luminescence detector (OSL) in a phantom model consisting of nine and 31 transverse sections. The parameters of the panoramic device were set to 80 kV, 4 mA, and 12 s in the standard program mode. The X-ray spectrum was applied in the same manner as the panoramic dose by using the SpekCalc Software. The results indicated a mass attenuation coefficient of $0.008226cm^2/g$, and an effective energy of 34 keV. The equivalent dose between the RPL and the OSL was calculated based on a product of the absorbed doses. The density of the aluminum attenuators was $2.699g/cm^3$. During the panoramic examination, tissue absorption doses with regard to the RPL were a surface dose of $75.33{\mu}Gy$ and a depth dose of $71.77{\mu}Gy$, those with regard to the OSL were surface dose of $9.2{\mu}Gy$ a depth dose of $70.39{\mu}Gy$ and a mean dose of $74.79{\mu}Gy$. The effective dose based on the International Commission on Radiological Protection Publication 103 tissue weighting factor for the RPL were $0.742{\mu}Sv$, $8.9{\mu}Sv$, $2.96{\mu}Sv$ and those for the OSL were $0.754{\mu}Sv$, $9.05{\mu}Sv$, and $3.018{\mu}Sv$ in the parotid and sublingual glands, orbit, and thyroid gland, respectively. The RPL was more effective than the OSL for measuring the absorbed radiation dose in low-energy systems with a rotational X-ray tube.

Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry

  • Discher, Michael;Kim, Hyoungtaek;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.429-436
    • /
    • 2022
  • Investigations of retrospective dosimetry have shown that components of mobile phones are suitable as emergency dosimeters in case of radiological incidents. For physical dosimetry, components can be read out using optically stimulated luminescence (OSL), thermoluminescence (TL) and phototransferred thermoluminescence (PTTL) methods to determine the absorbed dose. This paper deals with a feasibility study of display glass from modern mobile phones that are measured by thermally assisted (Ta) optically stimulated luminescence. Violet (VSL, 405 nm) and infrared (IRSL, 850 nm) LEDs were used for optical stimulation and two protocols (Ta-VSL and Ta-IRSL) were tested. The aim was to systematically investigate the luminescence properties, compare the results to blue stimulated Ta-BSL protocol (458 nm) and to develop a robust measurement protocol for the usage as an emergency dosimeter after an incident with ionizing radiation. First, the native signals were measured to calculate the zero dose signal. Next, the reproducibility and dose response of the luminescence signals were analyzed. Finally, the signal stability was tested after the storage of irradiated samples at room temperature. In general, the developed Ta-IRSL and Ta-VSL protocols indicate usability, however, further research is needed to test the potential of a new protocol for physical retrospective dosimetry.

Quenching Effect in an Optical Fiber Type Small Size Dosimeter Irradiated with 290 MeV·u-1 Carbon Ions

  • Hirata, Yuho;Watanabe, Kenichi;Uritani, Akira;Yamazaki, Atsushi;Koba, Yusuke;Matsufuji, Naruhiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.222-228
    • /
    • 2016
  • Background: We are developing a small size dosimeter for dose estimation in particle therapies. The developed dosimeter is an optical fiber based dosimeter mounting an radiation induced luminescence material, such as an OSL or a scintillator, at a tip. These materials generally suffer from the quenching effect under high LET particle irradiation. Materials and Methods: We fabricated two types of the small size dosimeters. They used an OSL material Eu:BaFBr and a BGO scintillator. Carbon ions were irradiated into the fabricated dosimeters at Heavy Ion Medical Accelerator in Chiba (HIMAC). The small size dosimeters were set behind the water equivalent acrylic phantom. Bragg peak was observed by changing the phantom thickness. An ion chamber was also placed near the small size dosimeters as a reference. Results and Discussion: Eu:BaFBr and BGO dosimeters showed a Bragg peak at the same thickness as the ion chamber. Under high LET particle irradiation, the response of the luminescence-based small size dosimeters deteriorated compared with that of the ion chamber due to the quenching effect. We confirmed the luminescence efficiency of Eu:BaFBr and BGO decrease with the LET. The reduction coefficient of luminescence efficiency was different between the BGO and the Eu:BaFBr. The LET can be determined from the luminescence ratio between Eu:BaFBr and BGO, and the dosimeter response can be corrected. Conclusion: We evaluated the LET dependence of the luminescence efficiency of the BGO and Eu:BaFBr as the quenching effect. We propose and discuss the correction of the quenching effect using the signal intensity ratio of the both materials. Although the correction precision is not sufficient, feasibility of the proposed correction method is proved through basic experiments.

Evaluation of Cancer Incidence Rate using Exposure Dose to Surrounding Normal Organs during Radiation Therapy for Prostate Cancer (전립선암의 방사선 치료 시 주변 정상장기 피폭선량을 이용한 암발생확률 평가)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.351-356
    • /
    • 2022
  • The purpose of this study was to evaluate the cancer incidence rate and provide basic data by measuring the photoneutron dose generated during intensity-modulated radiation therapy and volumetric modulated arc therapy used in radiation therapy for prostate cancer. The optically stimulated luminescence albedo neutron dosimeter for neutron measurement was placed on the Rando phantom in the abdomen and thyroid and photoneutron dose generated was measured. As a result of the study, intensity-modulated radiation therapy (7 portal) was measured to be higher than volumetric rotational radiation therapy in both abdominal and thyroid locations. When the cancer incidence rate was evaluated using the nominal risk coefficient of ICRP 103, the cancer incidence rate due to exposure to the colon and thyroid during intensity-modulated radiation therapy was 9.9 per 1,000 people, and volumetric rotational radiation therapy for 1,000 people. It was 3.5 per person. Based on the principle of ALARA (As low as reasonably archievable), it is considered to be a guideline for minimizing the exposure dose to normal organs in the establishment of a radiation treatment plan.

A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT (두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구)

  • Ki-Won Kim;Joo-Young Oh;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Kyung-Hwan Lim;Yun Yi
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

Changes of Optically Stimulated Luminescence Dosimeter Sensitivity with High Dose (고선량에 대한 광자극발광선량계의 방사선 민감도 변화 연구)

  • Han, Su Chul;Kim, Kum Bae;Choi, Sang Hyoun;Park, Seungwoo;Jung, Haijo;Ji, Young Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2016
  • We investigated the effect of high dose on the sensitivity of optically stimulated luminance dosimeters (OSLDs) on Co-60 gamma rays and used a commercial OLSD (Landauer, Inc., Glenwood, IL). New OSLDs were chosen arbitrarily and were irradiated with 1 Gy repeatedly. We confirmed the change in the radiation sensitivity after repeated irradiation. The OSLD sensitivity increased up to 3% after irradiating for seven times and decreased continuously after the eighth time. It dropped by approximately 0.35 Gy per irradiation. Finally, after irradiating for 30 times, the OSLD sensitivity decreased by approximately 7%. When the OSLDs were irradiated 10 times with 1 Gy after their irradiation using a high dose of 15 Gy and 30 Gy, their sensitivity decreased by 6% and 12%, respectively, compared to that before high-dose irradiation. The change in the OSLD sensitivity with a high dose could be modeled by an exponential equation. We confirmed the radiation sensitivity variation caused by a high dose, and the irradiation history of dosimeters was considered to reuse OSLDs irradiated with a high dose.

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

A Study of Cancer Incidence Rate due to Photoneutron Dose during Radiation Therapy for Prostate Cancer Patients (전립샘암 환자의 방사선 치료 시 광중성자 선량으로 인한 암 발생률의 연구)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.471-476
    • /
    • 2022
  • The purpose of this study was to study the probability of cancer occurrence due to photoneutron dose exposure of the colon and thyroid gland, which are normal organs, in 3D CRT, IMRT 5 portals, and IMRT 9 portals, which are radiotherapy methods for prostate cancer. The total prescribed dose for prostate cancer was 6600 cGy, 220 cGy per dose, and 30 divided irradiations were applied for the total number of times. After setting up the Rando phantom on the treatment table (couch) of the medical linear accelerator used in the experiment, an optically stimulated luminescence albedo neutron dosimeter was placed on the corresponding area of the large intestine and thyroid gland of the phantom for measurement. During 3D CRT of prostate cancer, the probability of secondary cancer due to photoneutron dose to the colon and thyroid gland, which are normal organs, was 1.8 per 10,000 people. And IMRT 5 portals were 8.7 per 10,000 people, which was about 5 times larger than 3D CRT. IMRT 9 portals derived the result that there is a probability that 1.2 people per 1,000 people will develop cancer. Based on this study, the risk of secondary radiation exposure due to the dose of photoneutrons generated during radiation therapy is studied, and it is thought that it will be used as useful data for radiation protection in relation to the stochastic effect of radiation in the future.

A Study on the Incidence of Side Effects according to the Number of Beams in Intensity-modulated Radiation Therapy for Prostate Cancer using 15 MV (15 MV를 이용한 전립샘암 세기조절 방사선치료 시 빔의 개수에 따른 부작용 발생률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.481-487
    • /
    • 2023
  • In this study, we analyzed the incidence of side effects of photoneutron dose according to the number of beams during intensity-modulated radiotherapy of prostate cancer using 15 MV. The radiation treatment plan design for intensity-modulated radiation therapy for prostate cancer was established with a prescription dose of 220 cGy per dose and a total of 7260 cGy for 33 treatments. The linear accelerator used in the experiment is Varian's True Beam STx (Varian, USA). Photoneutron dose was generated by using 15 MV energy in the planning target volume (PTV). The treatment plan was designed with IMRT 5, 7, and 9 portals using the Eclipse System (Varian Ver 10.0, USA). An optically stimulated luminescence albedo neutron dosimeter (Landauer Inc., USA) was used to measure photoneutron dose. IMRT 5 portals, 1.7 per 1,000, 7 portals, 1.8 per 1,000, 9 portals, 2.0 per 1,000 were calculated as the probability of experiencing side effects on the thyroid gland due to photoneutron dose. This study studies the risk of secondary radiation exposure dose that can occur during intensity-modulated radiation therapy, and it is considered that it will be used as useful data in relation to stochastic effects in the future.