• 제목/요약/키워드: Optically controlled GaAs MESFET

검색결과 2건 처리시간 0.016초

Static I-V Characteristics of Optically Controlled GaAs MESFET's with Emphasis on Substrate-induced Effects

  • Murty, Neti V.L. Narasimha;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.210-224
    • /
    • 2006
  • A new analytical model for the static I-V characteristics of GaAs MESFET’s under optically controlled conditions in both linear and saturation region is presented in this paper. The novelty of the model lies in characterizing both photovoltaic (external, internal) and photoconductive effects. Deep level traps in the semi insulating GaAs substrate are also included in this model. Finally, effect of backgate voltage on I-V characteristics is explained analytically for the first time in literature. Small signal parameters of GaAs MESFET are derived under both dark and illuminated conditions. Some of the results are compared with reported experimental results to show the validity of the proposed model. Since accurate dc modeling is the key to accurate ac modeling, this model is very useful in the designing of photonic MMIC’s and OEIC’s using GaAs MESFET.

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권1호
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.