Static I-V Characteristics of Optically Controlled GaAs MESFET's with Emphasis on Substrate-induced Effects

  • Murty, Neti V.L. Narasimha (Center for Research in Microelectronics (CRME), Department of Electronics Engineering, Institute of Technology, Banaras Hindu University) ;
  • Jit, S. (Center for Research in Microelectronics (CRME), Department of Electronics Engineering, Institute of Technology, Banaras Hindu University)
  • Published : 2006.09.30

Abstract

A new analytical model for the static I-V characteristics of GaAs MESFET’s under optically controlled conditions in both linear and saturation region is presented in this paper. The novelty of the model lies in characterizing both photovoltaic (external, internal) and photoconductive effects. Deep level traps in the semi insulating GaAs substrate are also included in this model. Finally, effect of backgate voltage on I-V characteristics is explained analytically for the first time in literature. Small signal parameters of GaAs MESFET are derived under both dark and illuminated conditions. Some of the results are compared with reported experimental results to show the validity of the proposed model. Since accurate dc modeling is the key to accurate ac modeling, this model is very useful in the designing of photonic MMIC’s and OEIC’s using GaAs MESFET.

Keywords

References

  1. A. J. Seeds, 'Microwave photonics,' IEEE Trans Microwave Theory Tech., vol. 50, no. 3, pp.877-887, March 2002 https://doi.org/10.1109/22.989971
  2. S. J. Rossek and C.E. Free, 'Optical control of microwave signals using GaAs FETs,' IEE Electron. Commun. Eng. J., vol.6, no. 1, pp.21-30, February 1994 https://doi.org/10.1049/ecej:19940103
  3. J. Rodriguez-Tellez et al. 'Optically controlled 2.4GHz MMIC Amplifier,' Proc. of 10th International Conference on Electronics, Circuits & Systems (ICECS), pp.970-973, December 2003 https://doi.org/10.1109/ICECS.2003.1301670
  4. S. Kawasaki, H. Shiomi and K. Matsugatani, 'A novel FET model including an illumination-intensity parameter for simulation of optically controlled millimeter-wave oscillators,' IEEE Trans Microwave Theory Tech, vol. 46, no.6, pp. 820-828, June 1998 https://doi.org/10.1109/22.681206
  5. S. Jit and B. B. Pal, 'A new Optoelectronic Integrated Device for Light-Amplifying Optical Switch (LAOS),' IEEE Trans. Electron Devices, vol. 48, no.12, pp. 2732-2739, December 2001 https://doi.org/10.1109/16.974697
  6. J. F. Ahadian et al., 'Practical OEIC's based on the monolithic integration of GaAs-InGaP LED's with commercial GaAs VLSI electronics,' IEEE J. Quantum Electron., vol. 34, no.7, pp.1117-1123, July 1998 https://doi.org/10.1109/3.687852
  7. A. A. De Salles, 'Optical control of GaAs MESFET's,' IEEE Trans. Microwave Theory Tech., vol. 31, no.10, pp.812-820, October 1983 https://doi.org/10.1109/TMTT.1983.1131611
  8. R. N. Simons, 'Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET,' IEEE Trans. Microwave Theory Tech., vol. 35, no.12, pp.1444-1455, December 1987 https://doi.org/10.1109/TMTT.1987.1133873
  9. J. L. Gautier, D. Pasquet, and P. Pouvil, 'Optical effects on the static and dynamic characteristics of a GaAs MESFET,' IEEE Trans. Microwave Theory Tech., vol.33, no.9, pp.819-822, September 1985 https://doi.org/10.1109/TMTT.1985.1133137
  10. R. N. Simons and K. B. Bhasin, 'Analysis of Optically controlled microwave/ millimeter-wave device structures,' IEEE Trans Microwave Theory Tech, vol.34, no.12, pp.1349-1355, December 1986 https://doi.org/10.1109/TMTT.1986.1133548
  11. V. K. Singh and B. B. Pal, 'Effect of optical radiation and surface recombination on the RF switching parameters of a GaAs MESFET,' IEE Proc. Optoelectron., vol.137, no.2, pp. 124-128, April 1990 https://doi.org/10.1049/ip-j.1990.0022
  12. P. Chakrabarti, A. Gupta, and N. A. Khan, 'An analytical model of GaAs OPFET,' Solid State Electron., vol. 39, no.10, pp.1481-1490, October 1996 https://doi.org/10.1016/0038-1101(96)00061-5
  13. S. H. Lo and C. P. Lee, 'Numerical analysis of the photo effects in GaAs MESFET's,' IEEE Trans. Electron Devices, vol.39, no.7, pp.1564-1570, July 1992 https://doi.org/10.1109/16.141220
  14. N. P. Khuchua et al., 'Deep-Level effects in GaAs Microelectronics: A Review,' Russian Microelectronics, vol.32, no.5, pp.257-274, 2003 https://doi.org/10.1023/A:1025528416032
  15. J. F. Wager and A. J. McCamant, 'GaAs MESFET interface considerations,' IEEE Trans. Electron Devices, vol. 34, no.5, pp. 1001-1007, May 1987 https://doi.org/10.1109/T-ED.1987.23036
  16. F. Gao et al., 'Sidegating effect in ion-implanted GaAs self-aligned gate MESFET MMICs,' Proc. of GaAs Reliability workshop, pp.27-35, Novem ber 1998 https://doi.org/10.1109/GAASRW.1998.768032
  17. E. B. Stoneham, P. A. J. O'Sullivan, S. W. Mitchell and A. F. Podell, 'Working with nine different foundries', Proc. of GaAs Integrated Circuit (GaAs IC) Symposium Tech Digest, pp.11-14, October 1990 https://doi.org/10.1109/GAAS.1990.175434
  18. I. Son and T. W. Tang, 'Modeling deep-level trap effects in GaAs MESFET's,' IEEE Trans. Electron Devices, vol. 36, no.4, pp.632-640, April 1989 https://doi.org/10.1109/16.22467
  19. Y. H. Chen, Z. G. Wang, J. J. Qian and M. F. Sun, 'Threshold behavior in backgating in GaAs metal-semiconductor field effect transistors: Induced by limitation of channel-substrate junction to leakage current,' J. Appl. Phys., vol.81, no.1, pp.511-515, January 1997 https://doi.org/10.1063/1.364129
  20. J. Wu, Z.G. Wang, T. W. Fan, L. Y. Lin and M. Zhang, 'Sidegating effect on Schottky contact in ion-implanted GaAs,' J. Appl. Phys., vol. 78, no.12, pp.7422-7423, December 1995 https://doi.org/10.1063/1.360399
  21. S. M. Sze, Physics of Semiconductor Devices, Wiley, New Delhi, 1999
  22. A. H. Khalid and A. A. Rezazadeh, 'Fabrication and characterization of transparent gate field effect transistors using indium tin oxide,' IEE Proc. Optoelectron., vol.143, no.1, pp. 7-11, February 1996 https://doi.org/10.1049/ip-opt:19960083
  23. T. Minami, 'Transparent conducting oxide semiconductors for transparent electrodes,' Semicond. Sci. Technol., vol.20, no.4, pp. S35-S44, April 2005 https://doi.org/10.1088/0268-1242/20/4/004
  24. A. Madjar, P. R. Herczfeld and A. Paolella, 'Analytical model for optically generated currents in GaAs MESFETs,' IEEE Trans. Microwave Theory Tech, vol. 40, no.8, pp.1681-1691, August 1992 https://doi.org/10.1109/22.149548
  25. Michael Shur, GaAs Devices and Circuits, Plenum press, New York, 1986