• Title/Summary/Keyword: Optical-Electrical Conversion

Search Result 162, Processing Time 0.021 seconds

Efficiency Characteristics of Cu(In,Ga)Se2 Photovoltaic Thin Films According to the Mo:Na Thickness (Mo:Na두께에 따른 Cu(In,Ga)Se2 태양전지 박막의 효율 특성)

  • Shin, Younhak;Kim, Myunghan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.701-706
    • /
    • 2013
  • We have focused on the conversion efficiency of CIGS thin film solar cell prepared by co-evaporation method as well as the optimization of process condition. The total thickness of back electrode was fixed at 1 ${\mu}m$ and the structural, electric and optical properties of CIGS thin film were investigated by varying the thickness of Mo:Na bottom layer from 0 to 500 nm. From the experimental results, the content of Na was appeared as 0.28 atomic percent when the thickness of Mo:Na layer was 300 nm with compactly densified plate-shape surface morphology. From the XRD measurements, (112) plane was the strongest preferential orientation together with secondary (220) and (204) planes affecting to the crystallization. The lowest roughness and resistivity were 2.67 nm and 3.9 ${\Omega}{\cdot}cm$, respectively. In addition, very high carrier density and hole mobility were recorded. From the optimization of Mo:Na layer, we have achieved the conversion efficiency of 9.59 percent.

Study of Growth and Temperature Dependence of SnS Thin Films Using a Rapid Thermal Processing (황화급속열처리를 이용한 SnS 박막성장 및 온도의존성 연구)

  • Shim, Ji-Hyun;Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • We fabricated a tin sulfide (SnS) layer with Sn/Mo/glass layers followed by a RTP (rapid thermal processing), and studied the film growth and structural characteristics as a function of annealing temperature and time. The elemental sulfur (S) was cracked thermally and applied to form SnS polycrystalline film out of the Sn percursor at pre-determined pressures in the RTP tube. The sulfurization was done at the temperature from $200^{\circ}C$ to $500^{\circ}C$ for a time period of 10 to 40 min. At ${\leq}300^{\circ}C$, 20 min., p-type SnS thin films was grown and showed the best composition of at.% of [S]/[Sn] $${\sim_=}$$ 1 and [111] preferred orientation as investigated from using XRD (X-ray diffraction) analysis and EDS (energy dispersive spectroscopy) and SEM (scanning electron microscopy), and optical absorption by a UV-VIS spectrometer. In this paper, we report the details of growth characteristics of single phase SnS thin film as a function of annealing temperature and time associated with the pressure and ambient gas in the RTP tube.

Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer (Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구)

  • Song, Yoon-Seog;Kim, Seung-Ju;Ryu, S.O.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

Characterizations of i-a-Si:H and p-a-SiC:H Film using ICP-CVD Method to the Fabrication of Large-area Heterojunction Silicon Solar Cells

  • Jeong, Chae-Hwan;Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • We investigated for comparison of large-area i-a-Si:H and p-a-SiC:H film quality like thickness uniformity, optical bandgap and surface roughness using both ICP-CVD and PECVD on the large-area substrate(diameter of 100 mm). As a whole, films using ICP-CVD could be achieved much uniform thickness and bandgap of that using PECVD. For i-a-Si:H films, its uniformity of thickness and optical bandgap were 2.8 % and 0.38 %, respectively. Also, thickness and optical bandgap of p-a-SiC:H films using ICP-CVD could be obtained at 1.8 % and 0.3 %, respectively. In case of surface roughness, average surface roughness (below 5 nm) of ICP-CVD film could be much better than that (below 30 nm) of PECVD film. HIT solar cell with 2 wt%-AZO/p-a-SiC:H/i-a-Si:H/c-Si/Ag structure was fabricated and characterized with diameter of 152.3 mm in this large-area ICP-CVD system. Conversion efficiency of 9.123 % was achieved with a practical area of $100\;mm\;{\times}\;100\;mm$, which can show the potential to fabrication of the large-area solar cell using ICP-CVD method.

A study of polarized mode convertible, wavelength tunable optical filter utilizing acoustic barrier and acouxto-optic effect in $LiNbo_3$ ($LiNbo_3$의 음향광학효과와 음향파 장벽을 이용한 편광모드 변환형, 파장가변 광 필터에 관한 연구)

  • 임경훈;정홍식
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.193-197
    • /
    • 2000
  • A polarized mode convertible, wavelength tunable optical filters with acoustic barriers and acousto-optic effect have been produced in LiNb03 substrate utilizing the Ti double diffusion technique. Polarization conversion in excess of 81 % and a spectral width of -200 kHz (-1.83 nm) were achieved at a wavelength of 1551.6 nm and RF frequencies of 173.07 kHz and 173.05 kHz for both transverse electric (TE) and transverse magnetic (lM) input polarizations, respectively. The electrical driving power was 10.97 mW and reduced to about 10% of one for an optical filter without an acoustic barrier. A linear tuning rate of 8.2 nmlMHz and sidelobe intensity of -4 dB was demonstrated. rated.

  • PDF

Orthoscopic real image reconstruction in integral imaging by modifying coordinate of elemental image (집적영상에서 요소영상의 좌표변환을 이용한 정치실영상 구현)

  • Jang, Jae-young;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1646-1652
    • /
    • 2015
  • In this paper, we propose a depth conversion method for orthoscopic real image reconstruction in integral imaging. Pseudoscopic image has been regarded a problem in conventional integral imaging. the depth of reconstructed image is depending on a coordinate of an elemental image. The conversion from pseudoscopic to orthoscopic may be possible by analysing the geometrical relation between pickup and reconstruction system of elemental image. The feasibility of the proposed method has been confirmed through preliminary experiments as well as ray optical analysis.

Manufacturing and Characterization of Ophthalmic Materials Using 2D Transition Metal Carbide

  • Seon-Young Park;A-Young Sung
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.67-73
    • /
    • 2024
  • Hydrophilic contact lens was prepared by dispersing MXene material in a hydrogel mixture, and the purpose of this study was to evaluate its properties as an ophthalmic material. The MXene used in the experiment was manufactured through an etching process using titanium aluminum carbide 312 [Ti3AlC2] and hydrofluoric acid [HF]. For the preparation of hydrophilic contact lenses, 2-hydroxyethyl methacrylate [HEMA], a photoinitiator 2-hydroxy-2-methylpropiophenone [2H2M], and a cross-linker Ethylene glycol dimethacrylate [EGDMA] were used, and UV-rays was irradiated for 50 seconds for photopolymerization. Optical transmittance, refractive index, water content, contact angle, electromagnetic wave shielding ability, and photo-thermal conversion effect were measured to evaluate the physical properties of the manufactured contact lens. Compared to MXene materials, MXene mixed with Dimethyl sulfoxide [DMSO] had superior dispersion ability in organic solvents, and the transparency of the prepared hydrophilic contact lenses was high. MXene did not significantly affect the refractive index and water content, and improved the wettability of the contact lens. In addition, the MXene material used as an additive showed electromagnetic wave shielding ability and photo-thermal conversion effect based on its excellent electrical conductivity. It is judged that the mixture using MXene as an additive can be used as a functional contact lens material for electromagnetic wave shielding and ocular photo-thermal therapy.

A Study of Cu-doped CdS thin film by E-beam (E-beam 제작된 Cu-doped CdS 박막에 관한 연구)

  • Kim, Seong-Ku;Park, Gye-Choon;Jo, Jae-Cheol;Jung, Woon-Jo;Rye, Yong-Tek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.67-72
    • /
    • 1992
  • In this paper, We prepared the thin film Cu-doped CdS Photovoltaic Cell, varying deposition condition by E-beam process and investigated its properties. After the Cu/CdS films were deposited on transparent ITO glass. We heat-treated to diffuse Cu atoms to CdS fi1m at 350[$^{\circ}C$]. With deposited Cu-doped CdS film. We investigated the electrical. optical. X-ray diffraction and junction property. We studied how to prepare the High conversion efficiency Solar cell window layer.

  • PDF

Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells (산화물구리 기반 이종접합형 태양전지의 후열처리효과)

  • Kim, Sangmo;Jung, Yu Sup;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.55-59
    • /
    • 2020
  • Copper Oxide (CuO) films were deposited on the n-type silicon wafer by rf magnetron sputtering for heterojunction solar cells. And then the samples were treated as a function of the annealing temperature (300-600℃) in a vacuum. Their electrical, optical and structural properties of the fabricated heterojunction solar cells were then investigated and the power conversion efficiencies (PCE) of the fabricated p-type copper oxide/n-type Si heterojunction cells were measured using solar simulator. After being treated at temperature of 500℃, the solar cells with CuO film have PCE of 0.43%, Current density of 5.37mA/㎠, Fill Factor of 39.82%.

Dual Fabry-Perot Interferometer to Improve the Color Purity of Displays

  • Keun Soo Shin;Jun Yong Kim;Yun Seon Do
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • We propose a dual Fabry-Perot interferometer (DFPI) structure that combines two Fabry-Perot interferometers. The structure is designed to have spectral peaks in the red, green, and blue regions simultaneously, to be applicable to R, G, and B subpixels without any patterning process. The optimized structure has been fabricated on a glass substrate using a thermal evaporation technique. When the DFPI structure was attached to the quantum-dot color-conversion layer, the full width at half maximum values of the green and red spectra decreased by 47.29% and 51.07% respectively. According to CIE 1931 color space, the DFPI showed a 37.66% wider color gamut than the standard RGB color coordinate. Thus it was experimentally proven that the proposed DFPI structure improved color purity. This DFPI structure will be useful in realizing a display with high color purity.