• Title/Summary/Keyword: Optical wireless Communication

Search Result 201, Processing Time 0.02 seconds

Flicker-free Visible Light Communication Using Three-level RZ Modulation

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • We introduce a new visible light communication (VLC) method in which three-level return-to-zero (RZ) modulation is used for flicker-free transmission. In the VLC transmitter, the three-level RZ modulation ensures that the average optical power is constant; thus, a flicker-free light-emitting diode (LED) light is achieved. In the VLC receiver, a resistor-capacitor high-pass filter is used for generating spike signals, which are used for data recovery while eliminating the 120 Hz optical noise from adjacent lighting lamps. In transmission experiments, we applied this method for wireless transmission of an air quality sensor message using the visible light of an LED array. This configuration is useful for the construction of indoor wireless sensor networks for air pollution monitoring using LED lights.

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

A Study on Frequency Response in LED-LED Communication (LED-LED 간의 통신을 위한 주파수 특성 연구)

  • Park, In-Jung;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.115-122
    • /
    • 2012
  • In this paper, we demonstrate that indoor wireless optical communication is possible with lighting LEDs without a photo diode or a solar cell. A LED is used for both light emitting and light signal detection. This scheme is very useful because transmission is possible without any additional communication systems. In experiments, wireless optical communication will be carried out at a higher signal frequency of 5MHz using a lighting LEDs with both light emitting and light detection characteristics in the future.

Implementation of Wireless Multiple Integrated Laser Engagement System using ZigBee-based Persinal Area Network (ZigBee기반 개인영역망을 사용한 무선 다중 통합 레이저 교전 시스템의 구현)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • We realized a wireless multiple integrated laser engagement system composed of personal area network using Zigbee. The wireless laser detector had function of analog signal processor, decoder and wireless communication. However, it should consume low power and be small and light in order to be attached to a soldier's body. The decoder was realized in software to be small and light. We induced low power consumption as reducing the load of system using a narrow band optical filter. The fabricated wireless laser detector functioned well in optically noisy environment. Although the communication to the player unit through the wireless personal area network was dependent on the attachment place it was perfectly worked with transmission power of -40.2dBm or more.

A Study on the White LED-based Underwater and Surface-to-Underwater Optical Wireless Communication Systems (백색 LED 기반 수중 및 수상-수중 간 광무선 통신시스템 연구)

  • Sohn, Kyung-Rak;Sohn, Chang-Woo;Kim, Sung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.309-314
    • /
    • 2012
  • In this paper, we present surface-to-underwater visible light communication systems using white LEDs. Pulse position modulation (PPM)-based analogue data communications and on-off keying-based digital data communications systems are developed. Inexpensive and commercial power-LEDs and photo-diodes are used to construct two types of systems. We report the experimental results obtained from the prototype systems to show the possibility of an optical underwater visible light transceiver as a basis for short range underwater wireless network. Their performance deteriorates more than the atmosphere's one because of attenuation and scattering of the light in water, but these results are promising for the potential to create more robust network interface that improve medium performance such as a LED modulation and a photo-detector demodulation.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

Manufacturing and Characteristic Evaluation of Free space Optical Communication Devices in 5G Mobile Base Stations for Emergency Disaster Response (긴급재난 대응용 5G 이동 기지국을 위한 대기공간 광통신 장치의 제작과 특성평가)

  • Jin-Hyeon Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.131-138
    • /
    • 2023
  • In this paper, a free space optical communication device that can be used in a mobile base station of several km or less was fabricated and its characteristics were investigated. To overcome the loss due to atmospheric transmission, an optical fiber amplifier (EDFA) with an output of 23 dBm or more was used. In order to increase the focusing speed and miniaturization of the laser beam, an optical lens was manufactured, and a transmission lens was designed to have beam divergence within the range of 1.5 to 1.8 [mrad]. A PT module that controls PAN/TILT was fabricated in order to reduce pointing errors and effective automatic alignment between transceiver devices. In this study, Reed-Solomon (RS) code was used to maintain the transmission quality above a certain level. It was manufactured to be able to communicate at a wireless distance of 300m in a weather situation with visibility of 300m. For performance measurement, it was measured using BERT and eye pattern analyzer, and it was confirmed that BER can be maintained at 2.5Gbps.

The Implementation of wire and wireless Integration Module of Zigbee and Optical Communication for Ship Area network(SAN) (Ship Area Network(SAN)를 위한 Zigbee 및 광 통신 유무선 통합 모듈 구현)

  • Moon, Yong-Seon;Bae, Young-Chul;Park, Jong-Kyu;Roh, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.428-434
    • /
    • 2010
  • In this paper, we propose intelligent SAN(Ship Area Network) which is reliable transmission by integration of optical network of wire communication and Zigbee of wireless communication. We also implement module for remote control and constitute, managing for a various sensors and a controllers which are connected SAN integration network It will be help to prevent accident of ship to monitor work environment, real time monitoring of a equipment and main compartment of a poor ship inside. And it will be also available to enhance labor reduction, sailing safety and sailing economical efficiency of ship inside.

Wireless Wearable GRF Sensing System for Continuous Measurements (연속적 데이터 획득을 위한 착용형 무선 지면 반력 측정 시스템)

  • Lee, Dongkwan;Jeong, Yongrok;Gu, Gwang Min;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • This paper presents a wireless ground reaction force (GRF) sensing system for ambulatory GRF recording. The system is largely divided into three parts: force sensing modules based on optical sensor, outsole type frame, and embedded system for wireless communication. The force sensing module has advantages of the low height, robustness to the moment interference, and stable response in long term use. In simulation study, the strain and stress properties were examined to satisfy the requirements of the GRF sensing system. Four sensing modules were mounted on the toe, ball, and heel of foot shaped frame, respectively. The GRF signals were extracted using Micrpcontroller unit and transferred to the smart phone via Bluetooth communication. We measured the GRF during the normal walking for the validation of the continuous recording capability. The recorded GRF was comparable to the off the shelf stationary force plate.

Study on optimized positioning of radio communication equipment and roaming algorithm for CBTC (CBTC를 위한 고속로밍 알고리즘과 무선통신장비의 위치 최적화 연구)

  • Kim Yun-Bae;Lee Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.275-281
    • /
    • 2005
  • In this paper, a new algorithm is proposed for high speed roaming in an Intelligent Train Control System(ITCS) and study on optimized positioning of radio communication equipment. A DCS(Data Communication System) which is a main part of CBTC(Communication Based Train Control) system, is consisted of radio based wireless communication system and wired optical system. In the radio based wireless communication, the position of AP enclosures and antennas shall be optimized for the guaranteed communication channel between wayside and trains both in open aired and tunnelled area. Also a communication channel established between wayside and train shall be maintained while train moves at its maximum speed. This study shows the way of determining the optimal position for the railway side communication equipment in Bundang Line and how to achieve continuous communicating channel for tracking and controlling train.

  • PDF