• Title/Summary/Keyword: Optical trapping

검색결과 87건 처리시간 0.212초

산성 표면절삭결함 제거 공정에 의한 실리콘 태양전지의 텍스쳐링 효과 개선 (Investigation of Improving Texturing Effect by Surface Saw Damage Etching Using Acidic Etchant for Silicon Solar Cells)

  • 박하영;이준성;권순우;윤세왕;임희진;김동환
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.835-840
    • /
    • 2008
  • Texturing for crystalline silicon solar cells is one of the important techniques to increase conversion efficiency by effective photon trapping. Generally, incoming wafers or alkali etched wafers are used for texturing. From this conventional etching process, $7{\sim}10{\mu}m$-sized random pyramids are formed. In this study, acid etching for removal of saw damages was practiced before texturing. This improved the resulting surface morphology, which consisted of $2{\sim}4{\mu}m$-sized pyramids. Because these pyramids covered the surface much more extensively, we obtained reduction of optical losses on the surface. In order to compare with conventional texturing, FE-SEM is used for observing surface morphology and reflectance data is analyzed by UV-VIS spectrophotometer.

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob;Kim, Juhwan;Na, Jeongkyun;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.147-152
    • /
    • 2018
  • We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging

  • Kumar, Ranjeet;Srivastava, Vishal;Mehta, Dalip Singh;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.78-87
    • /
    • 2016
  • Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.

시간분해 광반사 분광기술을 이용한 LT-GaAs 반도체 운반자의 초고속 거동 연구 (Ultrafast carrier dynamics study of LT-GaAs semiconductors by using time-resolved photoreflectance spectroscopy)

  • 서정철;이주인;임재영
    • 한국광학회지
    • /
    • 제10권6호
    • /
    • pp.482-486
    • /
    • 1999
  • 시간분해 광반사율 측정장치를 구성하여 저온에서 성장된 GaAs 시료에서의 초고속 운반자 거동을 연구하였다. LT-GaAs 반도체에서 운반자에 의하여 발생된 시간분해 광반사율은 결정 구조의 왜곡으로 레이저 파장에 강하게 의존한다. LT-GaAs 반도체에 존재하는 깊은 포획상태로 운반자가 빠르게 포획되기 때문에 시간분해 광반사율은 1 ps 이하의 빠른 소멸 특성을 갖게 되며, 깊게 포획된 운반자에 의하여 느린 소멸 특성을 갖는 광반사율이 유도된다.

  • PDF

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

La이 혼입된 고유전체/메탈 게이트가 적용된 나노 스케일 NMOSFET에서의 PBTI 신뢰성의 특성 분석 (Analysis of Positive Bias Temperature Instability Characteristic for Nano-scale NMOSFETs with La-incorporated High-k/metal Gate Stacks)

  • 권혁민;한인식;박상욱;복정득;정의정;곽호영;권성규;장재형;고성용;이원묵;이희덕
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.182-187
    • /
    • 2011
  • In this paper, PBTI characteristics of NMOSFETs with La incorporated HfSiON and HfON are compared in detail. The charge trapping model shows that threshold voltage shift (${\Delta}V_{\mathrm{T}}$) of NMOSFETs with HfLaON is greater than that of HfLaSiON. PBTI lifetime of HfLaSiON is also greater than that of HfLaON by about 2~3 orders of magnitude. Therefore, high charge trapping rate of HfLaON can be explained by higher trap density than HfLaSiON. The different de-trapping behavior under recovery stress can be explained by the stable energy for U-trap model, which is related to trap energy level at zero electric field in high-k dielectric. The trap energy level of two devices at zero electric field, which is extracted using Frenkel-poole emission model, is 1,658 eV for HfLaSiON and 1,730 eV for HfLaON, respectively. Moreover, the optical phonon energy of HfLaON extracted from the thermally activated gate current is greater than that of HfLaSiON.

Hole and Pillar Patterned Si Absorbers for Solar Cells

  • Kim, Joondong;Kim, Hyunyub;Kim, Hyunki;Park, Jangho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.226-226
    • /
    • 2013
  • Si is a dominant solar material, which is the second most abundant element in the earth giving a benefit in the aspect in cost with low toxicity. However, the inherent limit of Si has an indirect band gap of 1.1 eV resulting in the limited optical absorption. Therefore, a critical issue has been raised to increase the utilization of the incident light into the Si absorber. The enhancement of light absorption is a crucial to improve the performances and thus relieves the cost burden of Si photovoltaics. For the optical aspect, an efficient design of a front surface, where the incident light comes in, has been intensively investigated to improve the performance of photon absorption. Lambertian light trapping can be attained when the light active surface is ideally rough to increase the optical length by about 50 compared to a planar substrate. This suggests that an efficient design may reduce thickness of the Si absorber from the conventional 100~300 ${\mu}m$ to less than 3 ${\mu}m$. Theoretically, a hole-array structure satisfies an equivalent efficiency of c-Si with only one-twelfth mass and one-sixth thickness. Various approaches have been applied to improve the incident light utilization in a Si absorber using textured structures, periodic gratings, photonic crystals, and nanorod arrays. We have designed hole and pillar structured Si absorbers. Four-different Si absorbers have been simultaneously fabricated on an identical Si wafer with hole arrays or pillar arrays at a fixed depth of 2 ${\mu}m$. We have found that the significant enhanced solar cell performances both for the hole arrayed and pillar arrayed Si absorbers compared to that of a planar Si wafer resulting from the effective improvement in the quantum efficiencies.

  • PDF

유기단결정 Polydiacetylene Para-toluene Sulfonate에서 2차원 공간고립파의 진행과 상호 작용 전산모의 (Propagation and interaction of two dimensional solitary waves in organic single crystal of polydiacetylene para-toluene sulfonate)

  • 류재명;조재흥;황보창권;정진호
    • 한국광학회지
    • /
    • 제13권5호
    • /
    • pp.400-407
    • /
    • 2002
  • 2차원 공간 고립파는 비선형 굴절률이 빛의 세기에 따라 일정한 값에 수렴하는 포화 매질에서 안정적으로 전파될 수 있다. 그러나 빛의 세기가 크지 않은 경우, 5차 비선형 굴절률이 음수인 매질은 포화 매질의 특성을 가지므로 2차원 공간 고립파가 전파될 수 있다. 2차원 비선형 슈뢰딩거 방정식의 전산 시늉을 통하여 빛의 세기가 크지 않은 경우 가우시안 빛살이 5차 비선형 매질을 전파하는 과정을 조사하였다. 그 결과 자체 포획 일률로 입사시킬 때 가장 안정적으로 2차원 공간 고립파가 전파한다는 것을 알 수 있었다. 또한 위상차가 180$^{\circ}$인 두 공간 고립파를 0.05$^{\circ}$의 충돌각으로 충돌시키면서 한 쪽 고립파의 입사 일률을 조절한다면 출력단에서 두 공간 고립파의 완전 광 스위칭이 가능함을 확인하였다.

Energy separation and carrier-phonon scattering in CdZnTe/ZnTe quantum dots on Si substrate

  • 만민탄;이홍석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.191.2-191.2
    • /
    • 2015
  • Details of carrier dynamics in self-assembled quantum dots (QDs) with a particular attention to nonradiative processes are not only interesting for fundamental physics, but it is also relevant to performance of optoelectronic devices and the exploitation of nanocrystals in practical applications. In general, the possible processes in such systems can be considered as radiative relaxation, carrier transfer between dots of different dimensions, Auger nonradiactive scattering, thermal escape from the dot, and trapping in surface and/or defects states. Authors of recent studies have proposed a mechanism for the carrier dynamics of time-resolved photoluminescence CdTe (a type II-VI QDs) systems. This mechanism involves the activation of phonons mediated by electron-phonon interactions. Confinement of both electrons and holes is strongly dependent on the thermal escape process, which can include multi-longitudinal optical phonon absorption resulting from carriers trapped in QD surface defects. Furthermore, the discrete quantized energies in the QD density of states (1S, 2S, 1P, etc.) arise mainly from ${\delta}$-functions in the QDs, which are related to different orbitals. Multiple discrete transitions between well separated energy states may play a critical role in carrier dynamics at low temperature when the thermal escape processes is not available. The decay time in QD structures slightly increases with temperature due to the redistribution of the QDs into discrete levels. Among II-VI QDs, wide-gap CdZnTe QD structures characterized by large excitonic binding energies are of great interest because of their potential use in optoelectronic devices that operate in the green spectral range. Furthermore, CdZnTe layers have emerged as excellent candidates for possible fabrication of ferroelectric non-volatile flash memory. In this study, we investigated the optical properties of CdZnTe/ZnTe QDs on Si substrate grown using molecular beam epitaxy. Time-resolved and temperature-dependent PL measurements were carried out in order to investigate the temperature-dependent carrier dynamics and the activation energy of CdZnTe/ZnTe QDs on Si substrate.

  • PDF