Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.1.078

Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging  

Kumar, Ranjeet (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
Srivastava, Vishal (Department of Physics, Indian Institute of Technology Delhi)
Mehta, Dalip Singh (Department of Physics, Indian Institute of Technology Delhi)
Shakher, Chandra (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
Publication Information
Journal of the Optical Society of Korea / v.20, no.1, 2016 , pp. 78-87 More about this Journal
Abstract
Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.
Keywords
Laser resonators; Miniaturized Michelson interferometer; Optical tweezers; Human RBC; Interferometric phase-imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. S. Bae, J. I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev. 22, 532-538 (2015).   DOI
2 X. Wang, X.-B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” Journal of Electrostatics 39, 277-295 (1997).   DOI
3 J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989).   DOI
4 W. L. Collett, C. A. Ventrice, and S. M. Mahajan, “Electromagnetic wave technique to determine radiation torque on micromachines driven by light,” Appl. Phys. Lett. 82, 2730-2732 (2003).   DOI
5 R. Paul and K. V. I. S. Kaler, “Effects of particle shape on electromagnetic torques: A comparison of the effective-dipolemoment method with the Maxwell-stress-tensor method,” Phys. Rev. E 48, 1491-1496 (1993).   DOI
6 G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988).   DOI
7 H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169-179 (1998).   DOI
8 J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532-2544 (2004).   DOI
9 J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545-2554 (2004).   DOI
10 J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Current Science 86, 1432-1437 (2004).
11 W. Flugge, Handbook of Engineering Mechanics (McGraw-Hill, New York, USA, 1962).
12 J. W. Hutchinson, “Imperfection sensitivity of externally pressurized spherical shells,” J. Appl. Mech. 8, 49-55 (1967).
13 S. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed. (McGraw-Hill, New York, USA, 1961).
14 G. Rusciano, “Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells,” Physica Medica 26, 233-239 (2010).   DOI
15 R. M. Hochmuth, “Properties of red blood cells,” in Handbook of Bioengineering, R. Skalak and S. Chien eds. (McGraw-Hill, New York, USA, 1987).
16 J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085-3095 (1999).   DOI
17 C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Material 52, 1837-1845 (2004).   DOI
18 N. Neve, S. S. Kohles, S. R. Winn, and D. C. Tretheway, “Manipulation of suspended single cells by microfluidics and optical tweezers,” Cellular and Molecular Bioengineering 3, 213-228 (2010).   DOI
19 J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, "Self-reference quantitative phase microscopy for microfluidic devices," Opt. Lett. 35, 514 (2010).   DOI
20 M. Khan, H. Soni, and A. K. Sood, "Optical tweezer for probing erythrocyte membrane deformability," Appl. Phys. Lett. 95, 233703 (2009).   DOI
21 N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016-2018 (2012).   DOI
22 N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15 030503 (2010).   DOI
23 P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytometry Part A 85, 1030-1036 (2014).   DOI
24 S. Ruschin, E. Yaakobi, and E. Shekel, “Gaussian content as a laser beam quality parameter,” Appl. Opt. 50, 4376-4381 (2011).   DOI
25 R. Kumar, C. Shakher, and D. S. Mehta, “Compact interferometric optical tweezers for patterned trapping and manipulation of polystyrene spheres and SWCNTs,” J. Mod. Opt. 57, 1157-1162 (2010).   DOI
26 http://us.mt.com/us/en/home/supportive_content/application_editorials.Sodium_Chloride_re_e.twoColEd.ht
27 S. K. Mohanty and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26, 971-974 (2004).   DOI
28 S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7, 533-539 (2000).   DOI
29 T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18, 3719-3731 (2010).   DOI
30 M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259-2280 (2003).   DOI
31 F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab on a Chip 13, 4512-4516 (2013).   DOI
32 M. D. Panah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Display Technol. 6, 490-499 (2010).   DOI
33 A. R. Moradi, M. K. Ali, M. D. Panah, A. Anand, and B. Javidi, “Detection of calcium induced morphological changes of living cells using optical traps,” IEEE Photon. J. 2, 775-783 (2010).   DOI
34 M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40, 1881-1884 (2015).   DOI
35 N. Cardenas and S. K. Mohanty, “Decoupling of geometric thickness and refractive index in quantitative phase microscopy,” Opt. Lett. 38, 1007-1009 (2013).   DOI
36 Y. Kim, H. Shim, K. Kim, H. J. Park, S. Jang, and Y. K. Park, "Profiling individual human red blood cells using common-path diffraction optical tomography," Scientific Reports 4, 6659 (2014).   DOI
37 B. Kemper, J. Wibbeling, L. Kastl, J. Schnekenburger, and S. Ketelhut, "Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy," Proc. SPIE 9529, 952902:1-7 (2015).
38 K. H. Kim, J. G. Yoon, and Y. K. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343-346 (2015).   DOI
39 B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophoton. 3, 425-431 (2010).   DOI
40 B. Kemper, I. Bredebusch, W. Domschke, S. Kosmeier, P. Langehanenberg, J. Schnekenburger, and G. von Bally, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007).   DOI
41 B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).   DOI
42 E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Micro Vascular Research 4, 335-347 (1972).
43 B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy and impedance volume analyzer,” Cytometry A 73, 895-903 (2008).
44 K. R. Lee and Y. K. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630-3633 (2014).   DOI
45 W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Meth. 4, 717-719 (2007).   DOI
46 K. H. Kim, Z. Yaqoob, K. R. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. K. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935-6938 (2014).   DOI
47 N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327-13330 (2009).   DOI
48 G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775-777 (2006).   DOI
49 Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. National Academy of Sciences 107, 6731-6736 (2010).   DOI
50 M. Sarmis, B. Simon, M. Debailleul, B. Colicchio, V. Georges, J. J. Delaunay, and O. Haeberlé, “High resolution reflection tomographic diffractive microscopy,” J. Mod. Opt. 57, 740-745 (2010).   DOI
51 X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three dimensional profiling and tracking,” Opt. Eng. 52, 112306 (2014).
52 B. Rappaz, F. Charrière, C. Depeursinge, P. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt Lett. 33, 744-746 (2008).   DOI
53 G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503-2505 (2004).   DOI
54 E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6694-7001 (1999).
55 D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter optimized digital holographic microscope for high-resolution living cell analysis,” Appl. Opt. 43, 6536-6544 (2004).   DOI
56 C. J. Carl, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).   DOI
57 F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006).   DOI
58 B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic–phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014:1-4 (2011).
59 P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).   DOI
60 A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617-23622 (2012).   DOI
61 T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 10, 1165-1167 (2005).
62 S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of interaction of RBC with optical tweezers,” Opt. Express 13, 4745-4751 (2005).   DOI
63 A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3, 67-73 (2006).   DOI
64 J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85, 6048-6051 (2004).   DOI
65 G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).
66 S. C. Gifford, J. Derganc, S. S. Shevkoplyas, T. Yoshida, and M. W. Bitensky, “A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence,” British Journal of Heamatology 135, 395-404 (2006).   DOI
67 E. Y. Parshina, A. S. Sarycheva, A. I. Yusipovich, N. A. Brazhe, E. A. Goodilin, and G. V. Maksimov, “Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface,” Laser Phys. Lett. 10, 075607 (2013).   DOI
68 M. Friebel and M. Meinke, “Determination of the complex refractive index of highly concentrated haemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt. 10, 064019 (2005).   DOI
69 K. K. Williams, Hematology (McGraw-Hill Medical, New York, USA, 2010).
70 K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170-4191 (2013).   DOI
71 Y. L. Wang and D. E. Discher, Methods in Cell Biology - Cell Mechanics (Elsevier Press, 2008), vol. 83.
72 S. Suresh, “Mechanical response of human red blood cells in health and disease: some structure-property-function relationships,” J. Mater. Res. 21, 1871-1877 (2006).   DOI
73 P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998).   DOI
74 Y. K. Park, M. D. Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. National Academy of Sciences 105, 13730-13735 (2008).   DOI
75 H. S. Byun, T. R. Hillman, J. M. Higgins, M. D. Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomaterialia 8, 4130-4138 (2012).   DOI
76 A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002).   DOI
77 R. W. Going, B. L. Conover, and M. J. Escuti, "Electrostatic force and torque description of generalized spheroidal particles in optical landscapes," Proc. SPIE 7038, 703826 (2008).
78 D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shape and size,” J. Opt. A: Pure Appl. Opt. 9, S228-S234 (2007).   DOI
79 F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613:1-14 (2007).
80 F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119-131 (2007).   DOI