• Title/Summary/Keyword: Optical transparency

Search Result 310, Processing Time 0.032 seconds

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Glass Antenna Using Transparent IZTO/Ag/IZTO Multilayer Electrode (IZTO/Ag/IZTO 다층 투명전극을 이용한 안경용 웨어러블 안테나)

  • Hong, Seungman;Kim, Youngsung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.372-377
    • /
    • 2016
  • Communication flow is changing rapidly. Recently, a range of wearable devices such as wearable glasses and wearable watch, have been launched. These kinds of wearable devices help people to live a more comfortable life. Wearable devices most have an antenna for wireless communication. This paper reports a transparent antenna that is made of an optically transparent material for wearable glasses. Transparent antenna can be applied to smart windows and will not disturb the view of user. IZTO/Ag/IZTO multilayer electrode has higher electrical and optical properties. This antenna is available because of its good electrical properties. This study measured the performance of the proposed transparent antenna, which is made of a multilayer electrode, applied to a lens. The proposed antenna was simulated with several substrates. The antenna impedance was matched with length and width of the antenna. The antenna's conductivity and transparency was measured using a HMS-3000 and UV-spectrometer. A 40nm thick Ag single layer antenna was fabricated on a flexible polyimide substrate for comparing the antenna performances. The fabricated antenna is useable at a frequency of 2.4-2.5GHz, which is suitable for Wifi communications and has peak gain of 2.89dBi and an efficiency of 34%.

Effect of Cd Concentration on Characteristics of CdS Thin Films Prepared by Chemical Bath Deposition (화학용액증착법에 의하여 증착된 CdS 박막의 특성에 대한 Cd 농도의 영향)

  • Jung, SungHee;Chung, CheeWon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • CdS thin films have been widely used as a buffer layer of CIGS semiconductor solar cells to reduce the lattice mismatch between transparent electrode and absorber layer. In order to prepare the CdS films with high transparency and low resistivity, they were deposited by varying Cd concentration with the constant S concentration in the solution using chemical bath deposition method. They were analyzed in terms of structural, optical and electrical properties of CdS films according to the $[S^{2-}]/[Cd^{2+}]$ ratio. In the case of Cd concentration higher than S concectration, CdS thin films were formed mainly by cluster- by-cluster formation due to the homogeneous reaction between Cd and S in the solution. Therefore the grain size increased and the transmittance decreased. On the other hand, in the case of Cd concentration lower than S concentration, CdS films were formed by heterogeneous reaction on the substrate rather than in the solution. The CdS films have the grains with the uniform circular shape of a few hundreds ${\AA}$. As the Cd concentration increased in the solution, the $[S^{2-}]/[Cd^{2+}]$ ratio decreased and the resistivity decreased by the increase in the carrier concentration due to the formation S vacancy by the excess Cd.

Investigation on EO Characteristics of SiNx Thin Film Irradiated by Ion-beam (이온 빔 조사된 SiNx 박막의 전기 광학적 특성에 관한 연구)

  • Lee, Sang-Keuk;Oh, Byeong-Yun;Kim, Byoung-Yong;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Kim, Jong-Hwan;Han, Jeong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.429-429
    • /
    • 2007
  • For various applications of liquid crystal displays (LCDs), the uniform alignment of liquid crystal (LC) molecules on treated surfaces is significantly important. Generally, a rubbing method has been widely used to align the LC molecules on polyimide (PI) surfaces. Rubbed PI surfaces have suitable characteristics, such as uniform alignment. However, the rubbing method has some drawbacks, such as the generation of electrostatic charges and the creation of contaminating particles. Thus, we strongly recommend a non contact alignment technique for future generations of large high-resolution LCDs. Most recently, the LC aligning capabilities achieved by ultraviolet and ion-beam exposures which are non contact methods, on diamond-like carbon (DLC) inorganic thin film layers have been successfully studied because DLC thin films have a high mechanical hardness, a high electrical resistivity, optical transparency, and chemical inertness. In addition, nitrogen-doped DLC (NDLC) thin films exhibit properties similar to those of the DLC thin films and a higher thermal stability than the DLC thin films because C:N bonding in the NDLC thin filmsis stronger against thermal stress than C:H bonding in the DLC thin films. Our research group has already studied the NDLC thin films by an ion-beam alignment method. The $SiN_x$ thin films deposited by plasma-enhanced chemical vapor deposition are widely used as an insulation layer for a thin film transistor, which has characteristics similar to those of DLC inorganic thin films. Therefore, in this paper, we report on LC alignment effects and pretilt angle generation on a $SiN_x$, thin film treated by ion-beam irradiation for various N ratios

  • PDF

Miscibility of Melt-mixed PLLA/PMMA Blends for Optical Film Application (광학 필름 적용을 위한 용융혼합된 PLLA/PMMA 블렌드의 상용성 연구)

  • Park, Eun Ju;Kim, In Seok;Park, Sang Seok;Lee, Ho Sang;Lee, Moo Sung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.744-752
    • /
    • 2013
  • The miscibility between poly(L-lactide) (PLLA) and poly(methyl methacrylate) (PMMA) was investigated using thermal analyses for the purpose of developing birefringence-free material at oriented state. The effect of methyl acrylate (MA) units as comonomer of PMMA on the miscibility was also studied. All the blends prepared in this study show composition-dependent single $T_g$'s between those of blend components and high transparency over the visible region, indicating the miscibility at molecular level and no discernible effect of MA units on it. No phase separation was observed at elevated temperature of $280^{\circ}C$, higher than the degradation of PLLA and PMMA. The interaction energy density in PLLA/PMMA blends with 17 mol% of MA was measured to be $-0.74J/cm^3$ from the equilibrium melting temperature depression based on the Hoffman-Weeks method. The blends show zero-${\Delta}$n behavior at a specific mixing ratio and the drawing ratio of 3 due to compensation of intrinsic orientation birefringence. Birefringence dispersion of PLLA/PMMA5 blends was also measured to examine the possibility for quarter-wave plates or polarizer protective films.

Large-Area Synthesis of High-Quality Graphene Films with Controllable Thickness by Rapid Thermal Annealing

  • Chu, Jae Hwan;Kwak, Jinsung;Kwon, Tae-Yang;Park, Soon-Dong;Go, Heungseok;Kim, Sung Youb;Park, Kibog;Kang, Seoktae;Kwon, Soon-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.2-130.2
    • /
    • 2013
  • Today, chemical vapor deposition (CVD) of hydrocarbon gases has been demonstrated as an attractive method to synthesize large-area graphene layers. However, special care should be taken to precisely control the resulting graphene layers in CVD due to its sensitivity to various process parameters. Therefore, a facile synthesis to grow graphene layers with high controllability will have great advantages for scalable practical applications. In order to simplify and create efficiency in graphene synthesis, the graphene growth by thermal annealing process has been discussed by several groups. However, the study on growth mechanism and the detailed structural and optoelectronic properties in the resulting graphene films have not been reported yet, which will be of particular interest to explore for the practical application of graphene. In this study, we report the growth of few-layer, large-area graphene films using rapid thermal annealing (RTA) without the use of intentional carbon-containing precursor. The instability of nickel films in air facilitates the spontaneous formation of ultrathin (<2~3 nm) carbon- and oxygen-containing compounds on a nickel surface and high-temperature annealing of the nickel samples results in the formation of few-layer graphene films with high crystallinity. From annealing temperature and ambient studies during RTA, it was found that the evaporation of oxygen atoms from the surface is the dominant factor affecting the formation of graphene films. The thickness of the graphene layers is strongly dependent on the RTA temperature and time and the resulting films have a limited thickness less than 2 nm even for an extended RTA time. The transferred films have a low sheet resistance of ~380 ${\Omega}/sq$, with ~93% optical transparency. This simple and potentially inexpensive method of synthesizing novel 2-dimensional carbon films offers a wide choice of graphene films for various potential applications.

  • PDF

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property (실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석)

  • Kim, Jung Soo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

Recent Progress of Ti3Ci2Tix MXene Electrode Based Self-Healing Application (Ti3Ci2Tix MXene 기반 전극 소재의 자가 치유 적용 기술 개발 동향)

  • Jun Sang Choi;Seung-Boo Jung;Jong-Woong Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.20-34
    • /
    • 2023
  • Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3Ci2Tix MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3Ci2Tix MXene, followed by an exploration of self-healing application technologies based on Ti3Ci2Tix MXene.

Effect of zinc oxide nanoparticle types on the structural, mechanical and antibacterial properties of carrageenan-based composite films (산화아연 나노입자 유형이 카라기난 기반 복합 필름의 구조, 기계적 및 항균 특성에 미치는 영향)

  • Ga Young Shin;Hyo-Lyn Kim;So-Yoon Park;Mi So Park;Chanhyeong Kim;Jae-Young Her
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.126-137
    • /
    • 2024
  • In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using three distinct zinc salts: zinc acetate, zinc chloride, and zinc nitrate. These ZnONPs were subsequently utilized in the fabrication of carrageenan-ZnONPs (Car-ZnONPs) composite films. The study assessed influence of the various ZnONPs on the morphological, water vapor barrier, color, optical, and antimicrobial properties of the Car-ZnONPs composite films. The surface morphology and UV-blocking attributes of the composite films were affected by the type of ZnONPs used, but their surface color, transparency, and chemical structure remained unaltered. The composite film's thickness and elongation at break (EB) significantly increased, while the tensile strength significantly decreased. In contrast, film's elastic modulus (EM) and water vapor permeability coefficient (WVP) showed no significant difference. All the composite films with added ZnONPs demonstrated potent antibacterial activity against Escherichia coli O157:H7 and Listeria monocytogenes . Among the carrageenan-based composite films, Car-ZnONPsZC showed the highest antibacterial and UV-blocking properties, and its elongation at break was significantly higher than that of the pure carrageenan films. This suggests that ZnONPs composite films have the potential to be used as an active packaging film, preserve the safety of the packaged food and extend shelf life.

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.