• Title/Summary/Keyword: Optical space

Search Result 1,513, Processing Time 0.035 seconds

Development of Optical System for ARGO-M

  • Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Han, In-Woo;Han, Jeong-Yeol;Park, Kwijong;Lim, Hyung-Chul;Yu, Sung-Yeol;Park, Eunseo;Seo, Yoon-Kyung;Moon, Il-Kwon;Choi, Byung-Kyu;Na, Eunjoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

Correlation Between the “seeing FWHM” of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

  • Bae, Young-Ho;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Park, Sun-Youp;Moon, Hong Kyu;Choi, Young-Jun;Jang, Hyun-Jung;Roh, Dong-Goo;Choi, Jin;Park, Maru;Cho, Sungki;Kim, Myung-Jin;Choi, Eun-Jung;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.137-146
    • /
    • 2016
  • The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

NEW OPTICAL TECHNIQUES FOR THE 'STRUVE' SPACE ASTROMETRIC PROJECT

  • YERSHOV V. N.;TSUKANOVA G. I.;STARICHENKOVA V. D.;ZAKHARENKOV G. F.;GRIAZNOV G. M.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.425-426
    • /
    • 1996
  • A few optical schemes for the future Russian astrometric satellite ('Struve') are discussed. New optical materials and techniques developed at the Vavilov State Optical Institute are planned to be used for the on-board telescopes. Optical characteristics of the reflecting Schmidt and a three - mirror scheme for the on-board telescopes are compared.

  • PDF

OPTICAL SURVEY WITH KMTNET FOR DUSTY STAR-FORMING GALAXIES IN THE AKARI DEEP FIELD SOUTH

  • JEONG, WOONG-SEOB;KO, KYEONGYEON;KIM, MINJIN;KO, JONGWAN;KIM, SAM;PYO, JEONGHYUN;KIM, SEONG JIN;KIM, TAEHYUN;SEO, HYUN JONG;PARK, WON-KEE;PARK, SUNG-JOON;KIM, MIN GYU;KIM, DONG JIN;CHA, SANG-MOK;LEE, YONGSEOK;LEE, CHUNG-UK;KIM, SEUNG-LEE;MATSUURA, SHUJI;PEARSON, CHRIS;MATSUHARA, HIDEO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.5
    • /
    • pp.225-232
    • /
    • 2016
  • We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (~4 deg2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is ~24 mag (AB) at 5σ, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dust-obscured galaxy, sub-millimeter galaxy at high redshift.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Electrical Relaxation in Silica Glasses and Nonlinearity in Electrical Conductivity (실리카 유리의 전기이완 특성과 비선형적 전기전도도)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.923-929
    • /
    • 1999
  • The cause of optical nonlinearity induced in thermally poled silica glass is believed to be the space charge polarization. Since the second order optical nonlinearity (electro-optic effect) can be used in optical switches the optical nonlinearity in silica glass has drawn a large attention. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field by the blocking electrode. Thermal poling performed to induce the optical nonlinearity in silica glass is basically identical to the process generating space charge polarization. As a first step to understand the mechanism of space charge polarization in silica glass hence the induced optical nonlinearity the absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of space charge polarization. It was found that the electrical relaxation exhibited a step by the space charge polarization in the relatively long time range and dielectric loss peak showed a maximum at a specific temperature which is depending on type of silica glass. It was turned out that this relaxation might be a cause of nonlinearity in electrical conductivity of silica glass.

  • PDF

Weather-insensitive Optical Free-space Communication Using the Gain-Saturated Optical Fiber Amplifier (이득 포화된 광섬유증폭기를 사용하는 기상에 둔감한 무선광통신)

  • Shin, Kyung-Woon;Hurh, Yoon-Suk;Lee, Sang-Hoon;Lee, Jae-Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.396-400
    • /
    • 2006
  • We present a weather-insensitive optical free-space communication method supporting optical packet channels. It operates optical fiber amplifiers in gain-saturation regions. When the propagation loss gets too high, it decreases the average packet rate, or the average packet length, or both, to increase the optical power level launched into the free-space. As a demonstration, we transmit $8{\times}10$ Gigabit Ethernet channels over a terrestrial distance of 2.4 km. One gain-saturated free-space optical repeater is used at the halfway point.