• Title/Summary/Keyword: Optical soliton

Search Result 43, Processing Time 0.026 seconds

Ultrashort Optical Pulse Generation at 10 GHz by Pulse Compression of Actively Mode-Locked Fiber Laser Output (능동 모드잠금 광섬유 레이저 출력의 펄스 압축에 의한 10 GHz 극초단 광 펄스 발생)

  • Seo, Dong-Sun;Weiner, Andrew M.
    • Journal of IKEEE
    • /
    • v.9 no.2 s.17
    • /
    • pp.115-122
    • /
    • 2005
  • We report 400 femto-second highly stable, nearly transform-limited, pulse generation at 10 GHz in $1540{\sim}1550$ nm wavelength region by adiabatic soliton pulse compression of an actively mode-locked fiber ring laser output. Without using any supermode selection device, supermode beating noise has been suppressed below -123 dB/Hz, resulting less than 100 femto-second timing jitters at the noise band of $1\;kHz{\sim}100\;MHz$.

  • PDF

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

An array of dark spatial solitons generated by an adiabatic amplification of nonlinear refractive index with the beam propagation distance (진행거리에 따른 비선형 굴절률의 점진적 증폭에 의하여 생성된 어두운 공간솔리톤 배열)

  • 전진호;김광훈;문희종;고광훈;이원규;노영철;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.308-314
    • /
    • 1997
  • We have studied the generation of an array of dark spatial solitons in a self-deforcusing medium. Unlike a single fundamental dark spatial soliton, we show numerically that the generation of an array of dark spatial solitons from a spatially sinusoidal input beam needs an adiabatic amplification of nonlinear refractive index with the beam propagation distance. In experiment, we establish a Mach-Zehnder interferometer for making the sinusoidal input beam and use a cylindrical lens for the adiabatic amplification. We observe that the dark soliton's dip-width becomes narrower and the background intensity distribution becomes flatter with increasing the nonlinearity.

  • PDF

Performance of long-haul optical fiber commumication system using optical amplifiers with post amplifier loss (후치 증폭기 손실을 갖는 광섬유 증폭기를 사용한 장거리 광통신 시스템의 성능형가)

  • 이무도;이호준;이화용
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.326-332
    • /
    • 1994
  • Performance of soliton based long-haul optical communication system with in-line optical amplifier repeaters are evaluated numerically. To reduce the optical amplifier noise, the amplifier gain is increased and the post amplifier loss is included. By theoretical calculation with 1480 nm co propagating pump, 7 dB amplifier gain and operating the amplifier 1 dB in compression, the spontaneous emission factor can be reduced from 2.37 to 1.45 by increasing the pump power from 3.71 to 11.53 mW and increasing the post amplifier loss from 0 to 10 dB. Then, power penalty can be reduced from 4.09 to 1.20 dB for 8,000'km transmission and the maximum transmission distance is 14,890 km. ,890 km.

  • PDF

Three-dimensional odd ring dark spatial solitons

  • Kim, Guang-Hoon;Jeon, Jin-Ho;Noh, Young-Chul;Ko, Kwang-Hoon;Moon, Hee-Jong;Lee, Jai-Hyung;Chang, Joon-Sung
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.104-109
    • /
    • 1997
  • The propagation properties of three-dimensional dark spatial solitons having odd ring formation is analyzed numerically in the frame of the (1 + 2)-dimensional nonlinear Schrodinger equation and compared with a pair of odd dark solitons. We discuss the experimental excitation condition of an odd ring dark soliton, which is superimposed on a finite-width background beam, with phase masks.

Analysis of Signal Propagation in Nonlinear Optical Fiber using SS-FEM with Sparse Matrix (희귀행렬 SS-FEM에 의한 비선형 광섬유의 전송신호 해석)

  • Jeong, Baek-Ho;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Signal propagation in nonlinear optical fiber is analyzed numerically by using SS-FEM (Split-Step Finite Element Method). By adopting cubic element function in FEM, soliton equation of which exact solution was well known, has been solved. Also, accuracy of numerical results and computing times are compared with those of Fourier method, and we have found that solution obtained from using FEM was very relatively accurate. Especially, to reduce CPU time in matrix computation in each step, the matrix imposed by the boundary condition is approximated as a sparse matrix. As a result, computation time was shortened even with the same or better accuracy when compared to those of the conventional FEM and Fourier method.

  • PDF

Influences of the Filter Effect on Pulse Splitting in Passively Mode-Locked Fiber Laser with Positive Dispersion Cavity

  • Chen, Xiaodong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Based on the extended nonlinear Schr$\ddot{o}$dinger equation, the influences of the filter effect on pulse splitting in a passively mode-locked erbium-doped fiber laser with positive dispersion cavity are investigated theoretically. Numerical results show that, as the bandwidth of the spectral filter decreases, the nonlinear chirp appended to the pulse increases under the combined action of the filter effect of the super-Gaussian spectral filter and the self-phase modulation effect. On further decreasing the bandwidth, the wave breaking of the pulse takes place. In addition, by varying the pump power of the laser or the profile of the spectral filter, the influences of the filter effect on pulse splitting also change accordingly.

Optical transmission technology of Ultra high-speed and Ultra long distance (초고속 초장거리 광전송 기술)

  • 이봉영
    • Information and Communications Magazine
    • /
    • v.11 no.2
    • /
    • pp.77-89
    • /
    • 1994
  • High speed optical fiber transmission technology has been remarkably improved during the past 20 years. This paper presents recent research status and future technological issues for the future information society, that is, the Tb/s transmission by frequency division multiplexing and the ultra long-distance by optical soliton transmission. Erbium-doped fiber amplifier and recent optical technology have brought optical transmission system of up to 10 Gb/s to the point of commercialization. Taking into account the future super information highway, that is, B-ISDN network, ultra wide-band picture-based information can be provided for many subscribers via existing optical fiber cables. However, to achieve the high speed transmission, the technologies must be developed not only for transmission lines but also for transmission nodes. Since the conventional signal transmission/processing technique using electronics has the limit in its speed, novel photonic technology is being developed for this purpose. On the other hand, optical solitons propagate stably through optical fibers, without pulse broadening effect of the fiber dispersion. Since the pulse broadening effect becomes serious as the transmission speed increases, optical solitons is the important technologies to realize the high speed, long distance transmission.

  • PDF

Active optical coupler using the side polished single mode fiber and thermo-optic polymer multimode planar waveguide (측면 연마된 단일모드 광섬유와 열 광학 다중모드 평면도파로를 이용한 능동형 광 결합기)

  • 김광택;유호종;김성국;이소영;송재원;이상재;김시홍;강신원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.248-253
    • /
    • 1999
  • In this paper, we have investigated a fiber type active coupler which utilizes the mode coupling between the side polished single mode optical fiber and the active multimode planar waveguide. The proposed device can be used for not only tunable wavelength filter or optical intensity modulator but also a tool for measuring optical properties of guiding material such as refractive index, birefringence, electro-optic coefficient, and thermo-optic coefficient. We gave designed and optimized a coupler structure using the BPM and fabricated the device using thermo-optic polymer as active planar waveguide overlay. The device showed that insertion loss was less then 0.5 dB, extinction ratio was -13 dB at the resonance wavelength, and the wavelength tunablity due to thermo-optic effect was -1.5 nm/$^{\circ}C$. The active coupler using thermo-optic effect can be used as a wavelength tunable filer, an optical intensity modulator and an optical sensor. pulses that are subsequently compressed by a dispersive optical fiber. Experimental results show that $sech^2$ shape pulses with a pulse width of ~14 ps and a time bandwidth product of ~0.34 are successfully generated at 10 GHz repetition rate. In contrast to other methods, such as higher order soliton compression, this approach does not depend on the optical power and thus shows promise for application to low-power lasers.

  • PDF

Passively Mode-Locked 1.93-㎛ All-Fiberized Femtosecond MOPA Laser Using a Gold-Deposited Side-Polished Fiber (금 증착 측면연마 광섬유를 이용한 1.93㎛ 모드잠금 펨토초 전광섬유 MOPA 레이저)

  • Jung, Minwan;Koo, Joonhoi;Lee, Ju Han
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.6
    • /
    • pp.340-345
    • /
    • 2014
  • We experimentally demonstrate the use of a gold-deposited side-polished fiber as a $2-{\mu}m$-band polarizing device to produce mode-locked pulses from a thulium/holmium-codoped fiber ring cavity. The mode-locking effect was induced by nonlinear transmission caused by the gold-deposited side-polished fiber, due to nonlinear polarization rotation of the oscillated beam within the fiberized cavity. It is also shown that ~558-fs pulses with a peak power of ~6.7 kW could readily be produced at a wavelength of 1935 nm through subsequent thulium/holmium-codoped fiber amplification, due to the higher-order soliton compression effect.