• Title/Summary/Keyword: Optical soliton

Search Result 43, Processing Time 0.022 seconds

Higher-order soilton puliton pulse generation and compression in dispersion decreasing fiber for optical time division multiplexing system source applications (분산감소광섬유에서의 고차 솔리통 펄스 생성 및 압축을 통한 광시간분할다중시스템 광원의 제작에 대한 연구)

  • 이덕기;김나영;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.102-107
    • /
    • 2000
  • We propose a new scheme for generating a pedestal-free, femtosecond soliton pulse train by utilizing quasI-adiabatic high order soliton pulse evolution in dispersion decreasing fiber in conjunction with the intermediate pedestal suppression stage. Compression factor over 280 was achieved from lOGHz sinusoidal input, to 176 is soliton pulse train. train.

  • PDF

Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential

  • Zhong, Wei-Ping;Belic, Milivoj R.;Huang, Tingwen
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.425-431
    • /
    • 2012
  • Utilizing the three-dimensional Snyder-Mitchell model with a PT-symmetric potential, we study the influence of PT symmetry on beam propagation in strongly nonlocal nonlinear media. The complex Coulomb potential is used as the PT-symmetric potential. A localized spatiotemporal accessible soliton solution of the model is obtained. Specific values of the modulation depth for different soliton parameters are discussed. Our results reveal that in these media the localized solitons can exist in various shapes, such as single-layer and multi-layer disk-shaped structures, as well as vortex-ring and necklace patterns.

The generation of dark spatial soliton in photorefractive photovoltaic medium (광굴절 광기전력 물질에서의 어두운 공간솔리톤 발생)

  • 전진호;전남희;이원규;노영철;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.48-54
    • /
    • 2001
  • We investigate the generation of the dark spatial soliton and its role of wave guiding in Fe doped$LiNbO_3$ A cw Ar+ laser of 488 nm is used for the generation of the dark spatial soliton. The generation of the dark spatial soliton is observed even at the laser intensity as low as 10 mW/cm2. The self-defocusing effect is observed when the direction of the intensity variation is parallel to the optic axis, while it can't be seen when perpendicular to the axis. So, it is verified that the refractive index change is generated parallel to the optic axis. When 633 nm He-Ne laser beam is injected into the dark spatial soliton, the beam propagates just as in the diffraction free medium. So, it is verified that the dark spatial soliton can act as a waveguide.eguide.

  • PDF

Synchronization of a Silica Microcomb to a Mode-locked Laser with a Fractional Optoelectronic Phase-locked Loop

  • Hui Yang;Changmin Ahn;Igju Jeon;Daewon Suk;Hansuek Lee;Jungwon Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.557-561
    • /
    • 2023
  • Ultralow-noise soliton pulse generation over a wider Fourier frequency range is highly desirable for many high-precision applications. Here, we realize a low-phase-noise soliton pulse generation by transferring the low phase noise of a mode-locked laser to a silica microcomb. A 21.956-GHz and a 9.9167-GHz Kerr soliton combs are synchronized to a 2-GHz and a 2.5-GHz mode-locked laser through a fractional optoelectronic phase-locked loop, respectively. The phase noise of the microcomb was suppressed by up to ~40 dB at 1-Hz Fourier frequency. This result provides a simple method for low-phase-noise soliton pulse generation, thereby facilitating extensive applications.

Comression of optical pulse and generation of fundamental soliton byusing fibers which have different dispersion values (분산값이 서로 다른 파이버들을 이용한 광펄스의 압축과 기본솔리톤 생성)

  • 윤수영;안규철;송윤원;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.3012-3023
    • /
    • 1996
  • In this paper, we analyze the compression of optical soliton which is obtained by proceeding the optical pulse in FSDD(Fiber with Slowly Decreasing Dispersion) using both NSE(Nonlinear Schrodinger Equation) and GNSE(General Nonlinear Schrodinger Equation) and compare the results. We replace the FSDD with a sequence of fibers having different dispersion values and pompre the results with those obtained in FSDD. It is found that the same results in peak value and FWHM(Full width Half Maximum) can be obtained by replacing FSDD with a sequence of fibers having proper length. We vary the shape of initial pulse which is the input of FSDD and suggest the condition to obtain higher compression rate.

  • PDF

Numerical simulations on the amplitude and phase dependent propagation characteristics of dark solitons (진폭과 위상에 따른 어두운 솔리톤의 진행특성에 대한 전산시늉)

  • 김광훈;윤선현;문희종;임용식;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.238-244
    • /
    • 1994
  • We numerically studied on the dark solitons propagation for initial amplitude and phase shapes in the normalized nonlinear Schr dinger equation(NLSE) which describes the propagations of optical solitons. As the propagation distance increases, odd dark solitons evolve into a black soliton and pairs of gray solitons which have a different sign of blackness, and even dark solitons evolve into pairs of gray solitons without black solitons. When there exists a black soliton and a gray soliton, even though the initial amplitude shape is same, the sign of blackness of a gray solitons determines whether they would collide or not. We could see that the energy of dark solitons evolve into a couple of solitons of different blackness since there exists a continuous range of dark solitons with arbitrary blackness parameter, and this phenomenon was more clearly seen from the change of phase shapes from that of amplitude shapes. hapes.

  • PDF

Propagation Dynamics of Optical Vortices with Anisotropic Phase Profiles (비균일 위상 형태를 갖는 광보텍스의 진행 특성)

  • Kim Gwang-Hun;Lee Hae-Jun;Kim Jong-Uk;Seok Hui-Yong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.110-111
    • /
    • 2002
  • Controllable waveguide of optical vortex solitons is possible by using the rotational characteristics of optical vortices, while the relative phase difference across the soliton profiles can be used to steer the waveguide direction in case of two-dimensional dark solitons. It is important to understand in detail what sources contribute to the rotation of optical vortices to apply optical vortex solitons to the optical switchyard. (omitted)

  • PDF