• Title/Summary/Keyword: Optical sensing and sensors

Search Result 236, Processing Time 0.024 seconds

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani;Javad, Haghshenas
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.67-82
    • /
    • 2023
  • Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.

An Experimental Study of Injection Molding for Multi-beam Sensing Lens Using The Change of Gate Geometry (금형 게이트 크기 변화에 따른 멀티빔 센서용 렌즈 사출성형성 향상에 관한 연구)

  • Cho, S.W.;Kim, J.S.;Yoon, K.H.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • Rapidly developing IT technologies in recent years have raised the demands for high-precision optical lenses used for sensors, digital cameras, cell phones and optical storage media. Many techniques are required to manufacturing high-precision optical lenses, including multi-beam sensing lenses investigated in the current study. In the case of injection molding for thick lenses, a shrinkage phenomenon often occurs during the process. This shrinkage is known to be the main reason for the lower optical quality of the lenses. In the present work, a CAE analysis was conducted simultaneously with experiments to understand and minimize this phenomenon. In particular, the sectional area of a gate was varied in order to understand the effects of packing and cooling processes on the final shrinkage pattern. As a result of this study, it was demonstrated that a dramatic reduction of the shrinkage could be obtained by increasing the width of the gate.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

THERMAL CONTROL DESIGN FOR COMS (COMS 특별세션)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Human Detection in Images Using Optical Flow and Learning (광 흐름과 학습에 의한 영상 내 사람의 검지)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Human detection is an important aspect in many video-based sensing and monitoring systems. Studies have been actively conducted for the automatic detection of humans in camera images, and various methods have been proposed. However, there are still problems in terms of performance and computational cost. In this paper, we describe a method for efficient human detection in the field of view of a camera, which may be static or moving, through multiple processing steps. A detection line is designated at the position where a human appears first in a sensing area, and only the one-dimensional gray pixel values of the line are monitored. If any noticeable change occurs in the detection line, corner detection and optical flow computation are performed in the vicinity of the detection line to confirm the change. When significant changes are observed in the corner numbers and optical flow vectors, the final determination of human presence in the monitoring area is performed using the Histograms of Oriented Gradients method and a Support Vector Machine. The proposed method requires processing only specific small areas of two consecutive gray images. Furthermore, this method enables operation not only in a static condition with a fixed camera, but also in a dynamic condition such as an operation using a camera attached to a moving vehicle.

Vibration Sensing and Impact Location Measurement Using Intensity-Based Optical Fiber Vibration Sensor (광강도형 광섬유 진동센서를 이용한 진동감지 및 충격위치 측정)

  • 양유창;황운봉;박현철;한경섭
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.1-9
    • /
    • 2000
  • An intensity-based optical fiber vibration sensor is applied to monitor the structural vibration and detect impact locations on a plate. Optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. For vibration sensing, optical fiber vibration sensor is mounted on the carbon fiber composite beam and its response is investigated to free and forced vibration. In impact location detection, four optical fiber vibration sensors whose location is predetermined are placed at chosen positions and the different arrival times of impact-generated vibration signal are recorded by an FFT analyzer. Impact location can be calculated from these time delays. Experimental results show that optical fiber vibration sensor signals coincide with gap sensor in vibration sensing. The precise location of impact can be detected on an acrylate plate.

  • PDF

Optical System Design and Experimental Demonstration of Long-range Reflective-type Precision Displacement Sensors (반사형 장거리 정밀 변위 감지기용 광학계 설계 및 측정)

  • Lim, Jae-In;Kim, Seung-Hwan;Lee, Seoung-Hun;Jeong, Hae-Won;Lee, Min-Hee;Kim, Shung-Whan;Kim, Kyong-Hon
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2011
  • This paper reports design and demonstration of optical systems for reflective-type remote optical displacement sensors. Optical systems for light illumination sources and a position sensitive detector (PSD) for the displacement sensor were developed to sense displacement of bridges and instability of skyscrapers in a distance range from 10 m to 250 m to an accuracy better than a few mm. Performance of the optical systems was verified by composing a displacement sensor and by using it in measurement of displacement of a remote target with proper reflective optics depending on distance. The displacement sensor was composed of two LED light sources, each with collimating optics, and a two-dimensional PSD with telescope-type optics. Its displacement resolutions was measured to be 0.1 mm at a distance of 10 m and less than 3 mm at a distance of 250 m.

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.