• Title/Summary/Keyword: Optical receiver

Search Result 369, Processing Time 0.019 seconds

The Optimum Design of Optical Heterodyne Receiver used on Optical Sate Ilite Communication under Turbulent Atmosphere (교란 대기하에서 광위성통신용 광헤테로다인 수신기 최적 설계에 관한 연구)

  • 한종석;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.28-39
    • /
    • 1993
  • In the international BISDN used satellite, the laser that has large BW has to be used as a carrier for transmitting a lot of visual, vocal, and data information. Interoptical satellite communication has now developed in theoretical and practical aspects. But the optical communication, between satellite and earth station, is hindered by atmospheric absorption, scattering, and turbulence. In this paper, it was supposed that 1Gbps information was transmitted by binary FSK and 50mW AlGaAs semiconductor laser was used as a optical source in the satellite communication link between geosynchronous orbit satellite and earth station. We analyzed the BER and the entire diameter of the noncoherently combined optical heterodyne receiver as el evation angle, and determined the number of the optical heterodyne rece ivers, which is necessary for the BER of the receiver to be less than 10$^{-9}$ by computer simulation under the clear weather condition. It is shown that the BER and the number of the optical heterodyne receivers decrease as the elevation angle increases. In the region used the same number of the optical heterodyne receivers, it is shown that the entire diameter of the receiver increases but the BER decreases as the elevation angle increases.

  • PDF

A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link

  • Park, Mun-Su;Hwang, Jun-Am
    • ETRI Journal
    • /
    • v.9 no.2
    • /
    • pp.24-35
    • /
    • 1987
  • A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link We calculated the transfer functions of optical channel components and formulated the optimum transfer function of optical receiver for optical transmission to show a design rule of fiber optical link for digital transmission. And we evaluated various causes of sensitivity degradation to determine the receiver specification. Also we fabricated and demonstrated a 565Mbit/s single mode fiber optic link, 27km, to show the practicality of designed fiber optic link. The output power of the transmitter was above -3dBm, and the sensitivity of the optical receiver was -37.8dBm which is the same value we expected. Also the dynamic range was more than 25dB.

  • PDF

Fabrication of 2.5 Gbps Burst-mode Receiver and its Full Compliance to GPON

  • Lee, Mun-Seob;Lee, Byung-Tak;Kim, Jong-Deog;Lee, Dong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.355-358
    • /
    • 2008
  • In the current GPON market and standard, the line bit rate requirement is changing from 1.25 Gbps to 2.5 Gbps. We fabricate a 2.5 Gbps burst-mode receiver with commercially available blocks and optimize it with an APD bias control. A burst-mode measurement setup is made for the full compliance test with the GPON standard. The device meets the partially defined 2.5 Gbps specs in the current ITU G.984.2 standard, also, supports 1.25 Gbps specs for the coexistence issue in an access network. The full-compliant measurement values can be used as a guideline for fixing "for further study" specs in the current GPON standard at 2.5 Gbps.

Impact of Receiver on In-Band Crosstalk-Induced Penalties in Differentially Phase-Modulated Signals

  • Hu, Qikai;Kim, Hoon;Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.223-227
    • /
    • 2016
  • The impact of optical receiver configuration on in-band crosstalk-induced penalty has been investigated in both theoretical and experimental analyses, for differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) signals. Previously it has been shown that DPSK signals are ~6 dB more tolerant to in-band crosstalk than on-off keying (OOK) signals. However, we find that the tolerance difference between the two signals is reduced to ~3 dB when the decision threshold of the receiver is optimized to minimize the bit-error rate for each signal. Then we derive simple equations for the in-band crosstalk-induced penalty in DPSK and DQPSK signals with two different optical receiver configurations: balanced and single-ended direct-detection receivers. We confirm that the penalties obtained from our simple equations agree well with the measured results.

Impact of Solar Irradiance on the Receiver Sensitivity of Free-Space Optical Communication Systems (주광이 무선 광통신 시스템의 수신 감도에 미치는 영향)

  • Park, Gihong;Kim, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.259-267
    • /
    • 2020
  • We evaluate the degradation of receiver sensitivity induced by direct and indirect exposure to solar irradiance in free-space optical communication systems. For this purpose, we calculate the variances of numerous noise components arising from solar irradiance, and then estimate the receiver sensitivity penalties for intensity-modulation/direct-detection and coherent systems. The results show that the penalties are less than 1.3 dB when indirect sunlight impinges on the detector, regardless of the system. However, the sensitivity penalties are estimated to be larger than 30 dB when the sunlight is directly incident upon the receiver. These penalties are barely reduced if we insert an optical polarizer, or if we adjust the bandwidth of an optical filter at the receiver to be as narrow as the signal's bandwidth.

Design of 250-Mb/s Low-Power Fiber Optic Transmitter and Receiver ICs for POF Applications

  • Park, Kang-Yeob;Oh, Won-Seok;Choi, Jong-Chan;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • This paper describes 250-Mb/s fiber optic transmitter and receiver ICs for plastic optical fiber applications using a$ 0.18-{\mu}m$ CMOS technology. Simple signal and light detection schemes are introduced for power reduction in sleep mode. The transmitter converts non-return-to-zero digital data into 650-nm visible-red light signal and the receiver recovers the digital data from the incident light signal through up to 50-m plastic optical fiber. The transmitter and receiver ICs occupy only 0.62 $mm^2$ of area including electrostatic discharge protection diodes and bonding pads. The transmitter IC consumes 23 mA with 20 mA of LED driving currents, and the receiver IC consumes 16 mA with 4 mA of output driving currents at 250 Mb/s of data rate from a 3.3-V supply in active mode. In sleep mode, the transmitter and receiver ICs consume only 25 ${\mu}A$ and 40 ${\mu}A$, respectively.

Design of CMOS Optical Link Receiver for FTTH (FTTH용 CMOS Optical Link Receiver의 설계)

  • Kim Kyu-Chull
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This paper presents a CMOS optical receiver design featuring wide input dynamic range and low bit error rate suitable for FTTH application. We achieved 60dB input dynamic range for up to 100Mbps by controlling the PMOS feedback resistance of transimpedance preamplifier according to its output signal level. Auto-bias circuit is designed in current mirror configuration to minimize duty error. Circuit simulation has been performed using 2-poly, 3-metal, 0.6um CMOS process parameters. The designed receiver consumes less than 130mW at 100Mbps with 5V power supply.

An Analysis of Receiving Sensitivity of PIN Receiver for Optical Communication System (광통신시스템의 PIN 수신기 수신감도 해석)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2272-2278
    • /
    • 2011
  • It is essential to various evaluate about statistic character of the signal and additional noise for optimization of the optical communication system. We expressed various error probability with the m which was bandwidth and a bit numerical function and carried out performance evaluation of a PIN receiver. This research analyzed the receiving sensitivity of the PIN receiver and verified reception sensitivity through computer simulation in the optical communication system. As a result, the receiving sensitivity for PIN receiver are $9.2{\times}10^4$ photon/bit for given error probability.

Design and Analysis of a Receiver-Transmitter Optical System for a Displacement-Measuring Laser Interferometer (위치변위 레이저 간섭계용 송수신 광학계의 설계 및 분석)

  • Yun, Seok-Jae;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • We present a new type of receiver-transmitter optical system that can be adapted to the sensor head of a displacement-measuring interferometer. The interferometer is utilized to control positioning error and repetition accuracy of a wafer, down to the order of 1 nm, in a semiconductor manufacturing process. Currently, according to the tendency of scale-up of wafers, an interferometer is demanded to measure a wider range of displacement. To solve this technical problem, we suggest a new type of receiver-transmitter optical system consisting of a GRIN lens-Collimating lens-Afocal lens system, compared to conventional receiver-transmitter using a single collimating lens. By adapting this new technological optical structure, we can improve coupling efficiency up to about 100 times that of a single conventional collimating lens.

10 Gbps Transimpedance Amplifier-Receiver for Optical Interconnects

  • Sangirov, Jamshid;Ukaegbu, Ikechi Augustine;Lee, Tae-Woo;Cho, Mu Hee;Park, Hyo-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • A transimpedance amplifier (TIA)-optical receiver (Rx) using two intersecting active feedback system with regulated-cascode (RGC) input stage has been designed and implemented for optical interconnects. The optical TIA-Rx chip is designed in a 0.13 ${\mu}m$ CMOS technology and works up to 10 Gbps data rate. The TIA-Rx chip core occupies an area of 0.051 $mm^2$ with power consumption of 16.9 mW at 1.3 V. The measured input-referred noise of optical TIA-Rx is 20 pA/${\surd}$Hz with a 3-dB bandwidth of 6.9 GHz. The proposed TIA-Rx achieved a high gain-bandwidth product per DC power figure of merit of 408 $GHz{\Omega}/mW$.