• Title/Summary/Keyword: Optical property of metal

Search Result 74, Processing Time 0.024 seconds

Development of Organic Paste Porcelain for Fixed Prostheses (유기조성물을 이용한 페이스트형 일반도재 시스템)

  • Han, Jung-Suk;Lee, Myung-Hyun;Kim, Dae-Hyun;Chung, Hun-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • INTRODUCTION: The build-up method has been used for application of porcelain powder on the metal framework to make final tooth shape conventionally. This method takes time and need skill to mimic final shade and shape of porcelain fused to metal crown. The purpose of this study was to develop standard shape and shade laminating porcelain forms to reduce build-up time. METHODS: To make tooth form porcelain paste, several liquid organic compounds were added to conventional feldspathic porcelain. The amount of additives and rheologic property were tested to find out best composition. Comparison of mixing methods to reduced porosity, proper heating schedule, and measurement of shrinkage amount and residual organic materials were performed to set-up standard procedures. Finally, biaxial flexural strength and color of preformed laminated paste porcelain were compared with those of porcelain which fabricated by the conventional build-up method. RESULTS: There was no significant difference in physical properties and color stability between two fabrication methods after various testing methods. Conclusion: This new build-up method can be applied to fabricate the PFM crown and bridge without any loss of strength and optical properties.

Synthesis and Optical Property of Au/Cu, Au/Ag Alloy Nanocluster (Au/Cu, Au/Ag 합금 나노 미립자의 합성과 광학적 성질)

  • Na Hye Jin Na;Kyoung Chul Lee;Eun Ah Yoo;Kang Sup Chung
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.315-324
    • /
    • 2003
  • In this study, a new method is presented to produce stable hydrophobic metal alloy nanocluster in chloroform solution including surfactant NaAOT(sodium bis(2-ethylhexyl)-sulfosuccinate) via the chemical reduction of metal salt $(HAuCl_4,\AgNO_3,\Cu(NO_3)_2)$ by sodium borohydride. For the alloy nanocluster, several samples were prepared by changing the molar ratio of Au/Cu, Au/Ag alloy nanocluster, 3:1, 1:1, 1:3. The alloy nanoclusters were characterized by UV-Visible spectrophotometer, TEM(Transmission Electron Microscope), and XPS(X-ray Photoelectron Spectrometer). With the change of the mole ratio of the alloy component, the wavelengths of the surface plasmon absorption shift linearly from 520 nm of the pure Au nanocluster to 570 nm of the pure Cu nanocluster for Au/Cu alloy nanoclusters and from 405 nm to 520 nm for Au/Ag alloy nanoclusters. The chemical shifts of the Au4f, Ag3d, Cu2p XPS peaks were observed with changing the molar ratio of the alloy element. The alloy nanoclusters in chloroform solution were made uniformly in size and colloidally stable for long periods of time. These results indicate that the method here is a very effective method for synthesizing hydrophobic alloy nanoclusters with uniform or nearly uniform particle size distribution.

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF

Electro-Optical Characteristics and Analysis of 1×1 mm2 Large-Area InGaN/GaN Green LED (1×1 mm2 대면적 녹색 LED의 전기 광학적 특성 분석)

  • Jang, L.W.;Jo, D.S.;Jeon, J.W.;Ahn, Tae-Young;Park, M.J.;Ahn, B.J.;Song, J.H.;Kwak, J.S.;Kim, Jin-Soo;Lee, I.H.;Ahn, H.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.288-293
    • /
    • 2011
  • We investigated the effects of piezoelectric field on the electro-absorption characteristics in InGaN/GaN multiple-quantum well (MQW) green light emitting diodes (LED). Double crystal X-ray diffraction measurement was performed to study the crystalline property and indium (In) composition in the MQW active layer. To measure the electro-luminescence and electro-reflectance (ER) spectroscopy, we fabricated the $1{\times}1\;mm^2$ large-area green LED chip. The piezoelectric field inside the LED structure was evaluated from the Vcomp in active layer by the ER spectra. Finally, we analyzed the electro-absorption characteristics of the green LED by using the photo-current spectroscopy.