• Title/Summary/Keyword: Optical propagation

Search Result 500, Processing Time 0.025 seconds

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Bouble Resonance Optical Pumping in the Transition 5S1/2-5P3/2-4D3/2, 5/2 of Rb Atoms (루비듐 5S1/2-5P3/2-4D3/2, 5/2 전이선에서의 이중공명 광펌핑 분광)

  • Moon, H.S.;Lee, L.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2005
  • We present the double resonance optical pumping(DROP) spectra according to the laser power, the polarization combination of lasers, and the alignment of lasers in the transition $5P_{3/2}-4D_{5/2}\;and\;5P_{3/2}-4D_{5/2}$ of $^{87}Rb.$ We observed obviously changing DROP spectrum according to the laser power in the transition $5P_{3/2}-4D_{5/2}$ involved the cycling transition. The laser power effects are attributed to the low optical-pumping-effect in the cycling transition. We observed changing DROP spectrum depending on the polarizations of the lasers. The laser polarization effects are attributed to the changing transition probability according to the polarizations of lasers. We compared the co-propagation with the counter-propagation and the spectral linewidths were 12.2 MHz and 6.9 MHz, respectively.

High Repetition Rate Optical Pulse Multiplication with Cascaded Long-period Fiber Gratings

  • Lee, Byeang-Ha;Eom, Tae-Joong;Kim, Sun-Jong;Park, Chang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.29-33
    • /
    • 2004
  • We propose and demonstrate a novel optical pulse multiplier applicable to OTDM (Optical Time Division Multiplexing) systems using cascaded long-period fiber gratings. We have exploited the fact that each mode in a fiber has a different propagation constant to obtain time delays among optical pulses. The proposed scheme could realize high-frequency optical pulse multiplication for optical short pulse trains. We have successfully implemented two, four, and eight times multiplications with the maximum repetition rate of 416.7 ㎓. The obtained pulse delays are well matched with the simulated ones.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

Analysis of MCF in Millimeter Wave Systems (밀리미터파 시스템에서의 MCF 분석)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.164-170
    • /
    • 2006
  • Millimeter waves can be used for high resolution ranging and imaging. As the necessity of high-speed multimedia communication increases, millimeter wave systems are being developed since they are useful for wide band communication considering the shortage of available spectrum bands. However, it is necessary to analyze the characteristics of millimeter propagation in the atmosphere to assess the performance of millimeter wave systems. MCF and intensity fluctuations describe atmospheric effects on millimeter wave propagation. Using the quasi-optical method, a method is investigated to obtain MCF from the intensity distribution of focal plane. Also, a practical method is proposed to compute MCF from the flux measurement in the antenna focal plane.