• Title/Summary/Keyword: Optical pressure sensors

Search Result 75, Processing Time 0.024 seconds

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.

The Properties Characterization of ZnO Thin Film Grown by RF Sputtering (RF스퍼터링법으로 제작한 ZnO박막의 특성평가)

  • Jung, S.M.;Chong, K.C.;Choi, Y.S.;Kim, D.Y.;Kim, C.S.;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1433-1435
    • /
    • 1997
  • ZnO shows the properties of wide conductivity variation, high optical transmittance, and excellent piezoelectricity. Using these properties of ZnO, the material applications were extended to sensors, SAW filters, solar cells, and display devices. This paper investigated transmittance influencing factors for thin film ZnO grown by RF magnetron sputtering. The growth rate and structural investigation were carried out in conjunction with optical transmittance characteristics of thin film ZnO. The glass substrate temperature of $175^{\circ}C$ exhibited a preferential crystallization along (002) orientation. Transmittance of ZnO film deposited at the substrate temperature of $175^{\circ}C$ showed higher than 92%. An active sputter gas was investigated with a variation of $O_2$ partial pressure from 0 to 10% in an Ar atmosphere. ZnO film grown in 100% Ar gas shows that a reduced transmittance of 82% at the short wavelengths and decreased resistivity value. As the partial pressure of $O_2$ gas increased, the optical transmittance was increased above 90% at the short wavelengths, however, resistivity was drastically increased to higher than $10^4{\Omega}$-cm.

  • PDF

Comparative Analysis of Injection Molding Process by On-line Monitoring in Cylinder of Injection Molding Machine and in Cavity of Mold (사출성형기 실린더와 금형 캐비티의 실시간 모니터링을 이용한 사출성형공정 비교 분석)

  • Park, Hyung-Pi;Cha, Baeg-Soon;Tae, Jun-Sung;Choi, Jae-Hyuk;Rhee, Byung-Ohk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1513-1519
    • /
    • 2010
  • Recently, on-line process monitoring systems using sensors are being extensively used to produce highquality products. However, the difficulty in installing the sensors within the mold in the cases of micro-molds, optical molds, and molds with complex structures is a serious disadvantage of such process monitoring systems. In this study, the quantitative index of a process monitoring system was evaluated with the mold cavity pressure and the nozzle pressure for the injection molding machine. In order to evaluate the effect of the nozzle pressure, we performed correlation analysis for the weight of the molded product. We also examined the control characteristics of the injection molding machine by analyzing the effect of multistage injection speed, holding pressure, and injection pressure limit on the process monitoring data.

The Study on In-situ Diagnosis of Chemical Vapor Deposition Processes (화학기상증착 진공공정의 실시간 진단연구)

  • Jeon, Ki-Moon;Shin, Jae-Soo;Lim, Sung-Kyu;Park, Sang-Hyun;Kang, Byoung-Koo;Yune, Jin-Uk;Yun, Ju-Young;Shin, Yong-Hyeon;Kang, Sang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • The diagnosis studies of the process of chemical vapor deposition were carried out by using in-situ particle monitor (ISPM) and self-plasma optical emission spectroscopy (SPOES). We used the two kinds of equipments such as the silicon plasma enhanced chemical vapor deposition system with silane gas and the borophosphosilicate glass depositon system for monitoring. Using two sensors, we tried to verify the diagnostic and in-situ sensing ability of by-product gases and contaminant particles at the deposition and cleaning steps. The processes were controlled as a function of precess temperature, operating pressure, plasma power, etc. and two sensors were installed at the exhaust line and contiguous with each other. the correlation of data (by-product species and particles) measured by sensors were also investigated.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Characteristics of a-Si:H Films for Contact-type Linear Image Sensor (밀착형 선형 영상감지소자를 위한 a-Si:H막의 특성)

  • 오상광;박욱동;김기완
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.11
    • /
    • pp.894-901
    • /
    • 1991
  • Contact-type linear image sensors have been fabricated by means of RF glow discharge decomposition method of silane and hydrogen mixtures. The dependences of the electrical and optical properties of these sensor on thickness, RF power, substrate temperature and ambient gas pressure have been investigated. the ITO/i-a-Si:H/Al structure film shows photosensitivity of 0.85 and photocurrent to dark current ratio ($I_{ph}/I_{d}$) of 150 at 5V bias voltage under 200${\mu}W/cm^[2}$ red light intensity. Under 200${\mu}W/cm^[2}$ green light intensity, the ratio is 100. In order to investigate photocarrier transport mechanism and to obtain ${\mu}{\gamma}$ product we have measured the I-V characteristics of these sensors favricated with several different deposition parameters under various light sources. The linear inage sensor for document reading has been operated under reverse bias condition with green light source, resulting in ${\mu}{\gamma}$ product of about 1.5$[\times}10^{-9}cm^{2}$/V.

  • PDF