• 제목/요약/키워드: Optical pressure sensor

검색결과 111건 처리시간 0.029초

광섬유를 이용한 고감도 압력센서 개발 (Development of high sensitivity pressure sensor using optical fiber)

  • 이권형;조경재;김현철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.478-481
    • /
    • 1995
  • This paper presents the system demonstrator for an optical fiber sensor system developed as a technological evaluator suitable for generic sensric sensing applications. The new type of fiber-optic sensor employed a diaphragm displacement transforms pressure into optical intensity. Form this sensing technique, we can know the variation of source intensity, the loss of a optical fiber, and the reflectivity of the diaphragm surface. Experimental results are applied to the low-pressure transducer suitable for measuring miniature pressure.

  • PDF

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

A Mini Review of Recent Advances in Optical Pressure Sensor

  • Gihun Lee;Hyunjin Kim;Inkyu Park
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.22-30
    • /
    • 2023
  • Innovative and advanced technologies, including robots, augmented reality, virtual reality, the Internet of Things, and wearable medical equipment, have largely emerged as a result of the rapid evolution of modern society. For these applications, pressure monitoring is essential and pressure sensors have attracted considerable interest. To improve the sensor performance, several new designs of pressure sensors have been researched based on resistive, capacitive, piezoelectric, optical, and triboelectric types. In particular, optical pressure sensors have been actively studied owing to their advantages, such as robustness to noise and remote sensing capability. Herein, a review of recent research on optical pressure sensors with self-powered sensing, remote sensing, high spatial resolution, and multimodal sensing capabilities is presented from the viewpoints of design, fabrication, and signal processing.

광섬유 압력센서 (Fiber optic pressure sensor)

  • 이기완;배준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.640-643
    • /
    • 1996
  • In this paper, a sensitivity of the fiber optic pressure sensor in water is demonstrated. A single mode optical fiber Mach-Zehnder interferometer used to detect the change in optical path length produced by the change of fiber optic strain in water. The sensitivity with this system measured 100.mu.psia through an experiment in the static response.

  • PDF

Discernibly Temperature-insensitive Pressure Sensitivity in Porous Random-Hole Optical Fibers

  • Kim, Jeong;Kominsky, Dan;Pickrell, Gary
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.300-304
    • /
    • 2013
  • Novel breakthrough random-hole optical fibers (RHOFs) are fabricated in a draw tower facility, by tapering an optical fiber preform packed with a silica powder mixture capable of producing air holes in situ at the high temperature of tens of hundreds in degrees Celsius. Structural and propagation characteristics of the porous RHOF are explained briefly. Experimental investigations of the invented RHOF are performed for pressure sensor applications. Remarkable results are obtained for the RHOF with desirable pressure sensitivity independent of temperature, as is required for harsh conditions as in oil reservoirs.

초음파-광섬유 센서의 개발과 그 응용 (Development of Ultrasonic-Optical Fiber Sensor and its Applications)

  • 오일권;임승현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

광섬유를 이용한 충격 및 압력 센서에 관한 연구 (A Study of the Optical Fiber Sensor for sensing impact and pressure)

  • 양승국;조희제;이석정;전중성;오상기;김인수;오영환
    • 한국정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.129-135
    • /
    • 2003
  • 광섬유 센서의 주된 이점으로는 기계적 구동부가 없으므로 고신뢰성, 긴수명, 무전기적 간섭, 고응답속도, 저가이다. 본 연구에서는 공장설비 및 자동문 등과 같은 곳에서 많이 사용되어지는 자동장치의 오작동으로 인한 사고를 미연에 감지하여 인명피해를 줄이기 위하여 광섬유를 이용한 충격 및 압력센서를 제안 및 개발하였다. 센서의 원리로는 충격에 의해 다중모드 광섬유에서 발생하는 스펙클 패턴의 변화를 포토다이오드로 검출하는 방식이다. 광섬유에 충격의 세기를 변화하여 여러 차례 측정한 결과 충격의 세기의 변화에 따른 반응정도는 선형적으로 변하지는 않았으나 주어진 충격에 대해 민감하게 반응하는 것을 실험을 통하여 확인하였으며 광섬유의 피복 두께의 변화나 신호처리부에서의 증폭도를 조절함으로써 충격에 대한 반응감도를 조절할 수 있었다. 광섬유를 이용한 충격 및 압력센서의 장점으로는 점대점 방식이 아닌 라인 방식으로 설치하거나 측정함으로써 광섬유 전체가 센서역할을 하기 때문에 설치가 용이하고 감지범위가 넓어 센서로서의 우수한 특성을 가지므로 다양한 자동시스템 분야나 충격 및 압력센서로 활용될 수 있을 것이다.

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

Development of a measurement device of water level at the bottom of fuel tanks using an optical cable sensor

  • Kim, Hiesik;Lee, Byoungsuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.95.1-95
    • /
    • 2002
  • <1. New level meter inside the fuel tank> Ultrasound level sensors are widely applied as level meters of liquid tank. Measurement instrument of level between water and fuel is developed. Since the fuel is inflammable, the sensor system doesn't allow to include any electric circuit inside the fuel tank. The optical cable sensor can satisfy this explosive condition. The measurement method with ultrasonic sensor is attached on the tank wall or tank manhole lid. The pressure sensor can't be applied inside the gasoline fuel tank. An ultra-sonic sensor doesn't detect a enough signal reflected from water level deep under gasoline fuel. The pressure sensor is difficult to measure the height o...

  • PDF

광압력 센서의 설계 및 특성 (Design and characteristics of a fiber-optic pressure sensor)

  • 김영수;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.508-510
    • /
    • 1995
  • A fiber-optic pressure sensor is fabricated with a photoelastic glass material. To remove the influence of external pertubation along the optical fiber, a new referencing technique is proposed by using two light sources. LED with 870nm wavelength is used as light source for reference signal, and LED with 660nm wavelength is used as light source for modulation signal. The fiber-optic pressure sensor system shows good linearity within the pressure range of 0 to 5 $kg/cm^2$.

  • PDF