• Title/Summary/Keyword: Optical path difference

Search Result 60, Processing Time 0.03 seconds

Assessment and Correction of the Spectral Quality for the Savart Polarization Interference Imaging Spectrometer

  • Zhongyi Han;Peng Gao;Jingjing Ai;Gongju Liu;Hanlin Xiao
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.518-528
    • /
    • 2023
  • As an effective means of remotely detecting the spectral information of the object, the spectral calibration for the Savart polarization interference imaging spectrometer (SPIIS) is a basis and prerequisite of information quantification, and its experimental calibration scheme is firstly proposed in this paper. In order to evaluate the accuracy of the spectral information acquisition, the linear interpolation, cubic spline interpolation, and piecewise cubic interpolation algorithms are adopted, and the precision of the quadratic polynomial fitting is the highest, whose fitting error is better than 5.8642 nm in the wavelength range of [500 nm, 820 nm]. Besides, the inversed value of the spectral resolution for the monochromatic light is greater than the theoretical value, and the deviation between them becomes larger with the wavelength increasing, which is mainly caused by the structural design of the SPIIS, together with the rationality of the spectral restoration algorithm and the selection of the maximum optical path difference (OPD). This work demonstrates that the SPIIS has achieved high performance assuring the feasibility of its practical use in various fields.

Low Coherence Interferometer for Measurement of Path Length Errors in Arrayed-Waveguide Grating (Arrayed-Waveguide Grating의 경로 오차 측정을 위한 저 간섭 광원 간섭계)

  • Song, Young-Ki;Heo, Nam-Chun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.539-546
    • /
    • 2004
  • An improved low coherence interferometer system and a new analysis method for the accurate measurement of the optical path difference error of an AWG (Arrayed-Waveguide Grating) are described. The use of software simplifies the experimental setup by eliminating the hardware (clock generator). In addition, the actual distances between the peak positions of the adjacent interference signals are calculated using interpolation methods. The wavelength transmission characteristics of the AWG are calculated assuming the measured phase errors. The calculated AWG characteristic is quite similar to the actual measurement result, confirming accuracy of the proposed measurement setup.

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

MTF and wavefront error testing of large aperture optical system using unequal path interferometer (경로길이 불일치 간섭계를 이용한 대구경 광학계의 MTF 측정과 파면오차 검사)

  • Song, Jong-Sup;Jo, Jae-Heung;Lee, Yun-Woo;Song, Jae-Bong;Yang, Ho-Soon;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2005
  • A method for measuring the wavefront error and the modulation transfer function(MTF) of large aperture optics using an unequal path interferometer is presented. A bidirectional shearing interferometer is used for collimation testing of the measurement system. A large aperture Fizeau interferometer with long optical path difference measures the wavefront error of the optics under test by using a $\Phi$ 400 mm off-axis parabolic mirror. The MTF is also measured at the wavelength of the interferometer by changing the laser light into partially incoherent light. Test results of a $\Phi$ 300 mm Cassegrain type satellite telescope made in Korea are presented.

An Efficient Design Technique for the Flattened Transfer Function of Arrayed Waveguide Grating

  • Jung Jae-Hoon;Moon Hyung-Myung;Kwak Seung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2006
  • This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. The optimized transfer function will considerably improve the system performance.

Study of Propagation of Light along an Acupuncture Meridian

  • Choi, Chun-Ho;Soh, Kwang-Sup;Lee, Sang-Min;Yoon Gil-Won
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.245-248
    • /
    • 2003
  • Propagation of light along a pericardium meridian is measured and compared with that along a non-meridian path one cm away from the meridian. Source-light is illuminated on the Nei-Guan(PC6) and propagated light is detected at three points along the meridian. Four reference points are one cm away from the corresponding meridian points, respectively. Light propagates better along the meridian than the reference path with more than twenty percent difference for all the subjects tested.

A Study on the Design of 16-Channel AWG Wavelength Division Multiplexer for Super High-Speed Optical Communication (초고속 광통신을 위한 16-Channel AWG 파장다중화기의 설계에 관한 연구)

  • Cho, Myung-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.148-154
    • /
    • 2005
  • Various methods for analyze optical components which are necessary before the fabrication of optical circuit component and as its applications, designing method of Wavelength Division Multiplexer(WDM) filter using arrayed-waveguide grating(AWG) is paper. In the case of analyzing uniform optical waveguide, effective index method(EIM), harmonic expansion method are used, and in the case of non-uniform optical waveguide, beam propagation method(BPM) are used. In this paper, to use arrayed-waveguide grating as WDM filter of centered wavelength of $1.55{\mu}m$ and wavelength spacing of 0.8nm, all of the parameter of AWG is calculated by the HEM and the BPM using EIM. As a result of calculation, free spectral range is 12.8nm, focal length $9336.55{\mu}m$, path difference $129.36{\mu}m$ and the number of slab waveguide 91 when the distance of core center to center on row land circle is $20{\mu}m$.

The Design of Piezo-driven mirror for the Path Length Control in a Ring Resonator (링 공명기의 경로치 제어를 위한 피에조 구동 거울의 설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2551-2556
    • /
    • 2009
  • The principal operation of a ring laser gyroscope depends on the phase difference for the counter-propagating waves within a closed path. The reflection mirrors mounted on the resonator block form the traveling waves. Thus, the dimension accuracy of resonator block influences the traveling path of beam. In order to maintain the stable optical beam path in the ring resonator, the piezo-driven moveable mirror is adopted for the path length control under the thermal expansion or mechanical strain of resonator block. This paper presents the mathematical description of the elastic behavior of piezo-driven mirror. This description can be applied for the concept design of piezo-driven mirror.

A Study on The Birefringence Measurement in Precision Optical Product (정밀 광학 부품의 복굴절 측정 방법에 관한 연구)

  • Min, In Ki;Ko, Young Bae;Kwon, Chang Oh;Yoon, Kyung Hwan
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.90-94
    • /
    • 2012
  • Recently, injection molding process became more popular than ever to produce large quantities of high precision products. Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical products. Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. Generally, quantitative value of birefringence can be measured with polarizing microscope using the compensator. However, it is difficult to measure low order retardation with microscope, so developing a measurement system for low order optical path difference is in need. In the present paper, a system using Photo Elastic Modulator (PEM) is demonstrated to measure low phase retardation in injection-molded products.

  • PDF

A Study on the MTF of optical system with optical path difference (광경로차가 있는 광학기기의 변조전달함수에 관한 연구)

  • Che, Gyu-Shik;Jang, Won-Seok;Oh, Jake
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.518-525
    • /
    • 2012
  • The modulation transfer function is generally used as a method to estimate the characteristics of this kind of optical system because it cannot reappear or implement image of the object perfect. By the way, it is difficult to assess the optical system with existing MTF method since the reaction between diffraction and aberration of aperture is very complicate if the aberration is very small. The MTF has to be calculated considering the numerical aperture, defocusing, OPD and phase difference. We validate its feasibility using bessel function as an estimating method, and then realize it through illustration in this paper.