Browse > Article
http://dx.doi.org/10.3807/JOSK.2006.10.1.033

An Efficient Design Technique for the Flattened Transfer Function of Arrayed Waveguide Grating  

Jung Jae-Hoon (School of Electrical, Electronics and Computer Engineering, Dankook University)
Moon Hyung-Myung (Photonics Planar Integration technology Inc)
Kwak Seung-Chan (Photonics Planar Integration technology Inc)
Publication Information
Journal of the Optical Society of Korea / v.10, no.1, 2006 , pp. 33-36 More about this Journal
Abstract
This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. The optimized transfer function will considerably improve the system performance.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Glance, I. P. Kaminow, and R. W. Wilson, 'Applications of the integrated waveguide grating router,' J. Lightwave Technol.., vol. 12, pp. 957-961, 1994   DOI   ScienceOn
2 Y. Tachikawa, Y. Inoue, M. Kawachi, H. Takahashi, and K. Inoue, 'Arrayed-waveguide grating add-drop multiplexer with loop-back optical paths,'Electron Lett., vol. 29, pp. 2133-2134, 1993   DOI   ScienceOn
3 M. R. Amersfoort, C. R. de Boer, F. P. G. M. van Ham, M. K. Smit, P. Demeester, J. J. G. M. van der Tol, and A. Kuntze, 'Phased-array wavelength demultiplexer with flattened wavelength response,' Electron. Lett., vol. 30, no. 4, pp. 300-302, 1994   DOI   ScienceOn
4 D. B. Fogel, Evolutionary Computation. New York :IEEE Press, 1995
5 K. Press et al., 'FEM & Evolution Strategies in the optimal design of electromagnetic devices,' IEEE Trans. Magn., vol. 26, pp. 2181-2183, Sept. 2000   DOI   ScienceOn
6 Y. P. Ho, H. Li, and Y. J. Chen, 'Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-circle design,' IEEE Photon. Technol. Lett., vol. 9, no. 3, pp. 342-344, 1997   DOI   ScienceOn
7 M. C. Parker and S. D. Walker, 'Arrayed waveguide gratings, fiber Bragg gratings, and photonic crystals : an isomorphic Fourier transform light propagation analysis,' IEEE J. Select. Topics Quantum. Electron., vol. 8, pp. 1158-1167, Nov./Dec. 2002   DOI
8 A. Rigny, A. Bruno, and H. Sik, 'Multigrating method for flattened spectral response wavelength multi/demultiplexer,' Electron. Lett., vol. 33, no. 20, pp. 1701-1702, 1997   DOI   ScienceOn
9 J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, and I. Adesida, 'Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,' IEEE Photon. Technol. Lett., vol. 8, no. 10, pp. 1340-1342, 1996   DOI   ScienceOn
10 M. C. Parker and S. D. Walker, 'Design of arrayed waveguide gratings using hybrid Fourier-Fresnel transform techniques,' IEEE J. Select. Areas Quantum. Electron., vol. 5, pp. 1379-1384, Sept./Oct. 1999   DOI   ScienceOn