• Title/Summary/Keyword: Optical motion sensor

Search Result 83, Processing Time 0.031 seconds

Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors (광 마우스 센서를 이용한 이동로봇 좌표추정)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

Robust Optical Odometry Using Three Optical Mice (3개의 광 마우스를 이용한 강건한 광학식 거리주행계)

  • Kim, Sung-Bok;Kim, Hyung-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.861-867
    • /
    • 2006
  • This paper presents the robust mobile robot localization method exploiting redundant motion information acquired from three optical mice that are installed at the bottom of a mobile robot in a regular triangular form. First, we briefly introduce a low-cost optical motion sensor, HDNS-2000, and a commercial device driver development tools, WinDriver, to be used in this research. Second, we explain the basic principle of the mobile robot localization using the motion information from three optical mice, and propose the least squares based localization algorithm which is robust to the noisy measurement and partial malfunctioning of optical mice. Third, we describe the development of the experimental optical odometer using three PC optical mice and the user-friendly graphic monitoring program. Fourth, simulations and experiments are performed to demonstrate the validity of the proposed localization method and the operation of the developed optical odometer. Finally, along with the conclusion, we suggest some future work including the installation parameter calibration, the optical mouse remodelling, and the high-performance motion sensor adoption.

Recent Trends in Human Motion Detection Technology and Flexible/stretchable Physical Sensors: A Review

  • Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.391-396
    • /
    • 2017
  • Human body motion detection is important in several industry sectors, such as entertainment, healthcare, rehabilitation, and so on. In this paper, we first discuss commercial human motion detection technologies (optical markers, MEMS acceleration sensors, infrared imaging, etc.) and then explain recent advances in the development of flexible and stretchable strain sensors for human motion detection. In particular, flexible and stretchable strain sensors that are fabricated using carbon nanotubes, silver nanowires, graphene, and other materials are reviewed.

A Study on the Sensor Calibration for Low Cost Motion Capture Sensor using PSD Sensor (PSD센서를 이용한 모션캡쳐 시스템의 센서보정에 관한 연구)

  • Kim, Yu-Geon;Choi, Hun-Il;Ryu, Young-Kee;Oh, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.603-605
    • /
    • 2005
  • In this paper, we deal with a calibration method for low cost motion capture sensor using PSD (Position Sensitive Detection). The PSD sensor is employed to measure the direction of incident light from moving markers attached to motion body. To calibrate the PSD optical module, a conventional camera calibration algorithm introduced by Tsai. The 3-dimensional positions of the markers are measured by using stereo camera geometry. From the experimental results, the low cost motion capture sensor can be used in a real time system.

  • PDF

Development of a Real Time Three-Dimensional Motion Capture System by Using Single PSD Unit (단일 PSD를 이용한 실시간 3차원 모션캡쳐 시스템 개발)

  • Jo, Yong-Jun;Oh, Choon-Suk;Ryu, Young-Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1074-1080
    • /
    • 2006
  • Motion capture systems are gaining popularity in entertainment, medicine, sports, education, and industry, with animation and gaming applications for entertainment taking the lead. A wide variety of systems are available for motion capture, but most of them are complicated and expensive. In the general class of optical motion capture, two or more optical sensors are needed to measure the 3D positions of the markers attached to the body. Recently, a 3D motion capture system using two Position Sensitive Detector (PSD) optical sensors was introduced to capture high-speed motion of an active infrared LED marker. The PSD-based system, however, is limited by a geometric calibration procedure for two PSD sensor modules that is too difficult for common customers. In this research, we have introduced a new system that used a single PSD sensor unit to obtain 3D positions of active IR LED-based markers. This new system is easy to calibrate and inexpensive.

Sensor Mat using POF for Medical Application (의료용 플라스틱광섬유 센서 매트)

  • Choi, Kyoo-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.363-365
    • /
    • 2007
  • Novel concept of sensor mat and its signal processing method is proposed for patient monitoring in medical application. Proposed sensor mat structure has sensing inner layer which has cross-linked arrangement using plastic optical fiber(POF). Large core diameter of plastic optical fiber behaved as band pass filter by averaging the noise component. caused by unwanted environmental factors. Signal processor followed by sensor output added noise immune performance by filtering out unwanted component. Fail-proof patient breath monitoring scheme was realized by using intelligent decision algorithm. Unlike the conventional approach by using mechanical sensor, which have high sensitivity both to intruder and to environmental noise, our approach provided reliable breath motion detection.

  • PDF

Measurement of a Six-degree-of-freedom Dynamic Characteristics using Angle Sensor-Implemented Grating Interferometry (회절격자 간섭계를 이용한 초정밀 스테이지의 6 자유도 운동 특성 측정)

  • Lee, Cha-Bum;Kim, Gyu-Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.906-912
    • /
    • 2012
  • This paper presents the new method for a six-degree-of-freedom (DOF) motion measurement and those dynamic characterizations in an ultraprecision linear stage using angle sensor-implemented grating interferometry. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position sensitive detectors, four photodiodes and auxiliary optics components. From the previous study, it was confirmed that the proposed optical system could measure a six-DOF motion error in a linear stage. In this article, six-DOF motion dynamic characteristics of the stage were investigated through the step response and with respect to the conditions with a different speed of a slide table. As a result, the natural frequency and damping ratio according to a six-DOF direction was obtained. Also, it was seen that the speed of slide table had an significant effect on a six-DOF displacement motion, especially, X, which was considered as the effect of friction mechanism and local elastic mechanical deformation in a slide guide.

Restoration of Realtime Three-Dimension Positions Using PSD Sensor (PSD센서를 이용한 실시간 3차원 위치의 복원)

  • Choi, Hun-Il;Jo, Yong-Jun;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.507-510
    • /
    • 2003
  • In this paper, optical sensor system using PSD(Position Sensitive Detection) is proposed to obtain the three dimensional position of moving markers attached to human body. To find the coordinates of an moving marrer with stereo vision system, two different sight rays of an moving marker are required. Usually, those are acquired with two optical sensors synchronized at the same time. PSD sensor is used to measure the position of an incidence light in real-time. To get the three-dimension position of light source on moving markers, a conventional camera calibration method are used. In this research, we realized a low cost motion capture system. The proposed system shows high three-dimension measurement accuracy and fast sampling frequency.

  • PDF

Study of an Optical Goniometer Using a Multi-Photodiode Sensor

  • Kim, Ji-Sun;Kim, A-Hee;Oh, Han-Byeol;Kim, Jun-Sik;Goh, Bong-Jun;Lee, Eun-Suk;Choi, Ju-Hyeon;Baek, Jin-Young;Jun, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • The monitoring and measurement of the motion of a human joint is very important in screening for degenerative brain diseases and tracking the rehabilitation process. Since there are various medical fields to benefit from angular motion measurement, the necessity for monitoring of human joint movement is increasing. In this study, the optical sensor is composed of a light emission unit with a red LED and an optical fiber, and a reception unit with an arrangement of three photodiodes. The angular detection range was widened with the use of multiple photodiodes and the developed algorithm. The result will be useful for designing an effective angular sensor with low cost and small size.